Machine language Monitor
& Debugging ROM
for the BBC Micro

rmputer
q : neepts

Serial No.

L

aanmsmemdsdaOODDPTDIPDIDODIDPIOOEAANDIDIDIDIAAMAN

® ®® e O O®OO®O® O

GREMLIN Contents

SECTION SUBJECT PAGE

INTRODUCTION
ALTERING MEMORY CONTENTS
DISPLAYING MEMORY
EXECUTING CODE
4.1 Single-stepping
4.2 Execution with breakpoints
4.3 CALLing routines
5 SYSTEM VARIABLES AND SWITCHES 9 - 15
5.1.6 Sidways ROM handling
96241 Setting switches
52 Number format
6 THE EXPRESSION EVALUATOR 13 - 19
Operators
1 Variables
o5 Assignment operators
7 PRINTERS AND GRAPHICS 20 - 21
8 THE ASSEMBLER 22 - 26
8.1 Assembling long source files
8.2 Labels
8.3 Commands in source files
8.5 Commenting source files
9 SUMMARY OF COMMANDS AND SYNTAX 27 - 30
10 ERROR MESSAGES 31 - 32
10.1 Command errors
10.2 Assembler errors
10.3 Expression evaluator errors

AW N -
oW

Please Note

IT IS VITAL THAT THE REGISTRATION CARD SUPPLIED WITH GREMLIN IS RETURNED TO US,
WITH YOUR NAME AND ADDRESS FILLED IN. THE CARD IS POSTAGE PAID FOR THE U.K. IF
FOR ANY REASON A REGISTRATION CARD IS NOT SUPPLIED, YOU MUST CONTACT THE DEALER
FROM WHOM THE PACKAGE WAS PURCHASED. THE SERIAL NUMBER ON THE REGISTRATION CARD
SHOULD BE PRINTED INSIDE THE MANUAL. YOU MUST QUOTE YOUR SERIAL NUMBER IN ANY
CORRESPONDENCE WITH REGARD TO DISC DOCTOR. RETURN OF THE CARD IS FOR YOUR OWN
BENEFIT.

DUE TO INCREASING SOFTWARE PIRACY, A REWARD OF £100-£500 IS OFFERED TO ANYONE
PROVIDING INFORMATION LEADING TO A SUCCESSFUL LEGAL SETTLEMENT AGAINST ANY
DEALER, SCHOOL, INDIVIDUAL, ETC. MAKING COPIES OF THIS OR ANY OTHER COMPUTER
CONCEPTS SOFTWARE PACKAGE.

(C) Computer Concepts 1983
Software (C) Martin Tasker. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of Computer Concepts.

Computer Concepts accept no responsibility for loss of data, programs or time,
due to the use of GREMLIN.

L
"

o002 DADPTDEOARPIPDLIDADRAYDEILNS

® & & @ &

GREMLIN Section-1
1 INTRODUCTION

The GREMLIN ROM is a very powerful tool for examining and helping to
debug machine-code programs. Being ROM-based it occupies none of the user's
valuable program space, allowing a program being debugged to sit virtually
anywhere in memory. It has all the facilities expected of a debugging tool, as
well as some rather unusual and highly advanced features, such as the full
expression evaluator and the two-pass assembler.

The first few chapters in this manual are quite brief in their
explanation of the commands, but section 11 describes a session with GREMLIN
which should serve to clarify most points. Section 12 also gives a summary of
commands, system variables and switches, plus the syntax of the expression
evaluator, which will be useful when you have read the rest of the manual. It
is worth pointing out that, regardless of how impatient the user may be, trying
to use GREMLIN without first reading the manual is quite pointless, not to
mention frustrating.

TECHNICAL ADVICE

Technical problems should be sent in letter form to Computer Concepts.
Again, please read the manual first. Letters asking for answers given clearly
in the manual are Ilikely to be given 1little if any attention. All
correspondence must state name, address, and most important of all - the
registration serial number which is printed on the inside cover of this manual.
In order to hasten your reply, please enclose a self-addressed adhesive label,
and give details of any non-standard aspects of your machine - e.g. what other
ROMs are plugged in.

1.1 GETTING STARTED

Follow the fitting instructions supplied with GREMLIN and before screwing
the 1id back on, ensure that the ROM is working in the machine. To do this type
the command:

*HELP GREMLIN <RETURN>
If the answer on the screen is simply "OS 1.20" then GREMLIN is NOT being
recognised, so read the fitting instructions again to ensure that you have done
everything correctly. If you cannot get GREMLIN working, then report it to its
place of purchase. If however, the answer given is the name "GREMLIN x.xx"
(where x.xx is the version) followed by a list of commands etc. then all is
well. When the lid is replaced on the machine and you are ready to use GREMLIN,
type the command:
*GREMLIN <RETURN>

to enter GREMLIN. The above command may be reduced to a minimum abbreviation as
is usual for ROMs.

On entry, GREMLIN will clear the screen and show the STATUS DISPLAY at the top
of the screen. The status is a central feature in the GREMLIN, giving the user
all the general information about the processor. Below a dividing line the
title GREMLIN is shown, followed by an exclamation-mark used throughout as a
prompt to show that it is waiting for the next command. In mode 5 or mode 2
only the title and prompt appear,because the status needs more than a 20 column
screen to make sense. GREMLIN has the command MODE which can be used just as in
BASIC to change the screen mode to anything else, to save having to go into
BASIC and back just to change the mode.

Page-1

GREMLIN Section~1
The STATUS DISPLAY

Printed below is a typical status display shown on entry to GREMLIN. The
top line shows the contents of the A,X and Y registers, plus the current floy
settings. Below these are the contents of the Stack and Program Countor

registers which are two-byte pointers; to their right is an area of memory
pointed to by each register respectively. On the line which is mainly blank i
shown a disassembly of the next instruction, pointed to by PC. The example
shows three question marks "???" indicating that the instruction Iu
unrecognised, i.e. PC is not actually pointing to the start of a valld

instruction at present.

A=FF X=FF Y=FF

S =01FF 89 10 E3 DA 92 93 DC 89 oo
PC=FFFF DC FF FF 02 1B 00 7C 00 1.
727
06F0 00 00 00 00 00 00 00 00 st
06F8 00 00 00 00 00 00 00 00
M =0700 A9 01 85 06 A9 00 85 07 o
0708 4C 11 07 A9 FF 85 06 85 L.......
0710 07 20 92 07 AO 00 A5 04
0718 05 05 DO 04 20 92 07 60#
GREMLIN

!

Most of the status display (from the disassembled instruction downward)
is taken up with display of an area of memory. A GREMLIN 'system variable'
named 'M' is the memory pointer, and defines the area of memory to be
displayed. All values shown are in Hexadecimal. Each line is made up as
follows: two-byte address for the first byte of that line, a number of bytes
shown as pairs of Hex digits, then the same bytes shown as ASCII characters.
Any byte which cannot be displayed as an ASCII character is instead shown as a
dot.

In 80-column modes there are sixteen bytes of memory shown across the
width; in 40-column modes there are eight bytes across, as shown, but in
20-column modes the status display is not shown at all. The entire status
display may be either disabled so that it is not updatad, or omitted
altogether.

When debugging programs producing screen output (e.g. graphics) which
must be examined, the status display would be omitted entirely, and un
abbreviated list of registers and flags can be sent to the printer inshyuh
When, say, assembling a program from file, the status would be updated aftor
every instruction and assembly would consequently be slow. Whilst assembling
long programs it is advisable to disable the display's automatic update,
Internal 'switches' or 'flags' are provided to allow this control over the
status display. Switches are discussed later in the manual,

Page~-2

*tTer2r 22D AADPOEADPOEEAAAOADAEADYDYE2AN
&

GREMLIN Section-2
2 ALTERING MEMORY CONTENTS

This section deals primarily with editing memory. The topics discussed are
moving the memory pointer, editing memory, searching, and moving areas of
memory.

2.1 Moving around in memory.

The first step toward editing memory is learning how to use the status display
to examine different areas of memory. The system variable 'M' is used to point
the display to a particular memory region. System variables will be discussed
later, but it is necessary to know at this stage that all system variables are
prefixed by the dollar symbol '$' in order to reference them. Therefore the
system variable 'M' will be referred to as $M. Four commands are provided to
move the memory pointer ($M) and so look at different areas of memory. Practise
gained in use of these commands now will save time later.

Note that all command words or letters should start immediately after the
exclamation-mark prompt. The reason for this is explained later, but if this
simple rule is ignored, the command will not be performed as expected and a 'No
such variable' error will probably occur.

M <expr>

Sets $M directly. The full details of an expression <{expr> are explained in
great depth in section-6; for the moment, suffice it to say that some obvious
operations are allowed and numbers are dealt with in Hex format by default.
Therefore the command:

$M=1900 <RETURN> will cause the area of memory around 1900 Hex to be
shown in the status display.

+ {expr>

Adds the result of the specified expression to $M. Therefore, assuming $M still
points to 1900 from the previous example, the command:

+100 <RETURN> will add 100 Hex to $M, resulting in $M containing 1A00 Hex
and the area around that address being displayed.

- <expr>
Subtracts the result of the specified expression from $M. This is similar to
the above command and shouldn't need an example.

Function keys may be programmed as normal while using GREMLIN, so you may
find it wuseful to try some definitions such as "+8", "-8" etc. while becoming
proficient in using $M.

IND

This command indirects $M through itself. It is useful for following vectors
and linked 1lists. For instance, if $M contains 1A00 Hex it is said to be
'pointing' at memory location 1A00. If locations 1A00 and 1AOl contain 00 and
01 respectively, then as a pair they are pointing at location 0100 Hex.
Therefore if we give the command IND (which has no parameters) then $M is
indirected through itself and ends up containing (i.e. pointing to) &100. This
command may take a little more thought than the previous ones for users who are
unfamiliar with memory pointers. Remember that pointers in memory hold the
address in the usual convention of low-byte, high-byte, so 0100 Hex is stored
as 00 followed by O1.

Page-3

GREMLIN Section~2

2.2 Punching data into memory.

The powerful 'P' command allows almost any data to be 'Punched' into memory.
After putting data into memory with the P command, $M is automatically
incremented to point to the next location after the inserted data,

P <data>
Punches <data> into memory at the current location pointed to by $M. The <{data>
following the P command may be any of the following:

<expr> [,]

Punch BYTE. The result of the expression will be treated as a single byte and
$M incremented by 1. Since this is the default use of the P command the
comma is optional.

<expr> ;

Punch WORD. The expression result will be treated as a double-byte word and §M
incremented by 2. The use of a comma to follow a byte and semi-colon to
follow a word is the same convention used by BBC BASIC's VDU statement .

<"string"> J

Punch STRING. The given string must be enclosed within double-quote marks. The
string may be of any length and is evaluated by the 0.S. routine used to
evaluate *KEY statements. This means that the same syntax applies (if you
are unfamiliar, see the Users Guide).

<{assembler code>

Punch ASSEMBLY STATEMENT. One of GREMLIN's strongest points is its assembler,
which is a FULL implementation. Mnemonics must be typed in capitals,
expressions can be used and all addressing modes, etc, are supported. The
assembler is dealt with more fully in Section 8. The assembler code needs
no terminator; this does not usually cause ambiguity. One point to note,
do not type BNE$M+3 or a similar reference to $M in the "P" command,
because it is unlikely to function as expected. All other numeric operands
should assemble as expected.

2.3 Searching for data

F <data>

Searches forward from $M to find the specified data. The argument given to the
command as <data> follows the same rules described above for the P command. §M
is set to the start of the data found. If the data is not present in memory
then it will always be found in GREMLIN's own buffer area where it is stored
for comparison with the rest of memory. Do not be suprised either if the search
string is found in the keyboard buffer, or in the screen memory.

2.4 Moving data

IM <{exprl)> <expr2> <{expr3> .

INTELLIGENT MOVE. Moves data from <exprl> to <expr2>, transferring dexpri>

bytes, e.g. to move Hex 100 bytes of memory from 800 to 2000 Hex, type
IM 800 2000 100 <RETURN>

Memory may be moved up or down and the destination may overlap the source. M

is not affected by the IM command.

Page-4

N Ah"eearPrArDP2TD2PE2AAAAADATAAEAA2HADEYEDPEYE N

GREMLIN Section-3

3 DISPLAYING MEMORY

In addition to the status display, memory contents may be shown in two
further ways: a straightforward tabulation in Hex and standard ASCII (as used
in the status) or a disassembly. The disassembler is extremely versatile, with
numerous options including production of a SPOOL file which may be later
reassembled (possibly at a different location) by e1ther BASIC or GREMLIN,
depending on another option for output format.

3.1 Tabulation
T <exprl> <expr2>
Tabulates memory from {exprl> to <expr2> inclusive, in the same format as that

used in the memory display. ESCAPE may be used to exit at any time during a
tabulation.

F2 Disassembly
D <exprl> <expr2)> (8) (F"file"(title))
Disassemble from <exprl> to <expr2> inclusive. ESCAPE may be used to exit if
necessary. Further arguments are optional, a description of each is given
below, together with some relevant-switches:
OPTION
S - DISPLAY SOURCE CODE.The source code is shown, comprising instruction
address; the instruction as:- up to three bytes in Hex; the same bytes in
ASCII; followed by the instruction mnemonics as usual. Any unknown
instruction is disassembled as "?7?". This option must be omitted if
files are to be produced and used to re-assemble the code.
F "file"(title) — SEND OUTPUT TO FILE. The title may be something like AUTO
100,1 so that BASIC-compatible files may be easily reassembled by
*EXECing the file. GREMLIN can also reassemble the output,

The following options are controlled by switches, which control various options
within GREMLIN. They are described more fully in section-5, but they are used
simply by typing the command 'SW' followed by the two-letter switch name,
followed finally by a 'l' to turn the switch on, or a '0' to turn the switch
off, e.g. SW DR 1 would turn on the Disassemble Relative option.

DR - DISASSEMBLE RELATIVE SWITCH (Default=0) - causes a relative disassembly
format to be employed, wherein branch instructions are disassembled not as

BNE 7800
for instance, but as

BNE $M-5
This enables spooled files to be reassembled at a location different to
the original.

BF — BASIC FORMAT (Default=0) - causes BASIC format to be employed. This means
that relative output will refer to P% rather than $M, and Hex numbers will
be preceded by an ampersand "&". This overcomes the differences between
assembling in BASIC and GREMLIN.

HX - HEX NUMBER FORMAT (Default=1) - controls the number base. Setting to 0
causes decimal output - and also requires decimal input. See Section 5 for
more details on numeric format and the use of switches in general.

Page-5

GREMLIN Section=4

4 EXECUTING CODE

Once code is in the memory, it can be executed in a variety of ways:

1) SINGLE STEPPING. It can be executed one instruction at a time, allowing
observation of each instruction's effect on registers and memory.

2) WITH BREAKPOINTS. A number of breakpoints may be set such that, when
reached, cause execution to be temporarily suspended while registers and
memory are examined. Execution may then proceed to the next breakpoint.

3) CALL. An entire routine may be executed without pause by CALLing the start
address. This would mainly be used for calling debugged subroutines, 0.5.
routines etc.

ENABLING EXECUTION
Executing sections of code at random is likely to accidentally corrupt

valuable areas of memory. Misuse of the 'single-stepping' and 'execution with
breakpoints' commands is therfore hazardous. To reduce the risk of invoking the
commands (which are single letters and therefore easily mis-typed) a special
software 'switch' is provided to enable or disable their use. Named the JE
switch (meaning Jump Enable) it initially defaults to the disable setting to
prevent use of the S and J commands. Attempting to use either command will
result in the message "Not enabled" until the switch setting is changed. The JI
switch is set to enable or disable by the following commands:

SW JE 1 <RETURN>Enable execution instructions.

SW JE O <RETURN>Disable execution instructionms.

4.1 Single-stepping.
To single-step a program it is necessary to first set the program counter

(using the system variable $PC) to the address of the first instruction.

e.g. if the start address is 2000 Hex, then use the instruction:

$PC=2000 <RETURN>
To start the single-stepping type the single letter command:
S <RETURN>
Typing S initiates single-stepping mode, executes the first instruction and
updates the status display. Pressing <RETURN> will cause a further instruction
to be executed. Subsequent presses of <RETURN> cause individual single-steps to
be executed. Pressing any other key will abort the single-step mode and the
exclamation mark prompt will reappear to show that another command may be
entered.

Each time a single step is performed, the instruction shown on the status
line is executed, the registers and flags are updated, the next instruction is
displayed and GREMLIN awaits either <RETURN> to execute the next instruction or
any other key to exit back to command mode.

Continued....

Page-6

oA RABDRAADDDPADADIDAAAAANAS

N EEEEEEEEEEEEEEEEEEER"

GREMLIN Section-4

Whilst stepping through a program it: would prove useful to treat an
entire subroutine as a single step. For instance, stepping through the
0.S. OSWRCH routine each time a character is printed would accomplish nothing
(since it is presumably debugged), it would be very tedious and waste a great
deal of time. GREMLIN provides a method of coping with this problem by
single-stepping ONLY within a specified area, called the debugging area. Any
calls to routines outside the debugging area are executed as a whole in one
step. For instance entering the following short program should serve to
demonstrate, but first, enable single-stepping and set the memory pointer to a
reasonable postion with the commands:

SW JE 1 <RETURN>
M2000 <RETURN>

Then enter the short program as follows:

LDA #"All

JSR FFEE

$PC=$M-5

S <RETURN> <RETURN> <SPACE-BAR>
The two single-steps performed at the end show the accumulator first being
loaded with the letter "A" (41 Hex), followed by a call to an 0.S. subroutine
to print a character - OSWRCH (FFEE Hex) and the letter A appears on the
screen. The point to notice is that the subroutine which consists of many
instructions is executed in one step. If you wish to see the difference this
makes then enter the command:

$DH=0FFFF

The debugging area is defined by the contents of system variables named
$DL and $DH (Debug Low and Debug High). Initially $DL=0 and $DH=8000, causing
subroutines in the area 0..8000 to be "expanded" into their individual steps,
whereas ROM routines are treated as a single unit. Altering the debugging area
is accomplished by altering $DL and $DH. For instance if a routine between 5800
and 5900 is being debugged and any calls made outside that area are to
previously debugged subroutines, we might use

$DL=5800 <RETURN>
$DH=5980 <RETURN>

The time saved by using this feature is well worth the trouble of setting
$DL and $DH before starting to single-step.

Single-stepping through ROMS

Not only is it possible to step through the Operating System or GREMLIN;
any sideways ROM may be selected and stepped through. For instance, if BASIC is
in socket 3, typing
$ROM==3 <RETURN>
will enable you to step through any part of BASIC. (The "==" operator must be
used since $ROM is a single byte variable - see later). The memory display
allows inspection of any area of the ROM; the IM command will move ROM code
down into RAM where it may be disassembled etc. Some operations are not
possible with ROMs and are described later.

Continued....

Page-7

GREMLIN Section-4

The single-step mechanism is implemented by moving the instruction down
into low memory, and using BRK handling routines. This imposes limitations on
the sort of program that may be single-stepped. Any BRK instructions in a
program should not be stepped through; simply set the program counter to the
following instruction. Subroutines which rely on artificial dinstructions,
sometimes called self-altering code, cannot be stepped through. Certain partus
of the service sections of sideways ROMs may cause problems too. A sideways ROM
header will usually start by disabling interrupts... executing this instruction
will effectively disable single-stepping and is NOT advisable.

4.2 Continuous execution and breakpoints.
J <addr>
The J command causes execution of code at location <addr>. It, too, must be
enabled by the JE switch. When a 'BREAKPOINT' is encountered a warning 'beep'
will sound and the status display is updated. At this point the user may either
press <RETURN> to continue execution to the next breakpoint, or press any other
key to return to command mode and issue commands.

There are up to eight breakpoints, $BO..$B7, which are set by the user.
Several commands are provided to handle these breakpoints:
CB - Clear Breakpoints. All breakpoint positions are set to FFFF so that they
are effectively unused.
LB - List Breakpoints. Addresses of all breakpoints are listed.
Setting Breakpoints - No instructions exist specifically to set breakpoints,
since they are in system variables which may be assigned in the normal way
using the expression evaluator,
e.g. $BO=1234
would set breakpoint $BO to location 1234, There are two limitations with
breakpoints: firstly they must be set to the beginning of an instruction, since
they are implemented by "ghosting" BRK instructions into the code - otherwise
they will be interpreted as data; secondly they may not reside in ROM or even
sideways RAM - though code being executed can of course call 0.S. routines as
normal.
C - Continue. After a breakpoint has occurred (or at any other time) and the
user has chosen not to continue immediately, the C command allows continuation
from the current value in the Program Counter. Its use is therefore directly
equivalent to the command: J $PC <RETURN> but is much more convenient to
type and to remember. The C command must be enabled by the JE switch.

4.3 Direct execution
CALL <addr> - CALL subroutine at address <addr>. CALL will not call into
sideways ROMs other than GREMLIN or the 0.S.

4.4 More on ROMs
Due to the complexity of implementation, sideways ROMs may only be used in n
limited number of contexts. These are:
Single-stepping through ANY ROM.
The IM command.
The status display, T and D commands.
The P and F commands and the assembler (for writing into sideways RAM)
However, because GREMLIN is itself a sideways ROM it cannot respond to:
CALL, J or C commands.
Use of * in expression evaluator (except in the case of a
DESTINATION in sideways RAM on certain systems).

Page-8

" EEEEEEEEEEEEEEERE"

e AAEARADRAADDYTEAAADARAAADSIOADAYADPDEEAN

GREMLIN Section-5
5 SYSTEM VARIABLES AND SWITCHES
51 System variables

These may be divided into the following six groups.

5.1.1 Memory pointer $M
This is used to control the status display, the assembler, data-punching and
searching functions, as described in the preceding sections.

5.2 Processor registers $PC, $A, $X, $Y, $S, $P

All these variables are BYTE except $PC. This means they must be assigned to
using "==", and retrieved using ">" (see section 6). However, $X assigned to
as a word register (using = instead of ==) corresponds to YX as a register
pair. Y and X are often used in a pair, especially for 0.S. routines and
assigning both together is much easier, especially when assigning from another
variable, e.g. $X=$PC.

5.1:3 Program Debugging area $DL, $DH.
These two delimit the debugging area, being respectively the lower and upper
boundaries. The upper boundary is one byte higher than the last byte in the
debugging area (cf PAGE and HIMEM in BASIC). $DL defaults to zero; $DH to 8000
Hex. See section 4.1 for details of use.

5.1.4 Variable storage area $VL, $VH.

These delimit the area allocated to variable storage. Note they do NOT show
the current extent of the variable table, but the maximum possible extent.
Initially only one page is allocated to variable storage, in the language ROM
workspace area: 600..700 Hex. This will not be enough for a large assembly
program, and the table may be moved by typing the series of commands as
follows:

$A==83 (OSBYTE call to)
CALL FFF4 (find OSHWM)
$VL=$X

$A== (and similarly the)
CALL FFF4 (bottom of display RAM)
$VH=$X-1000

CLEAR

This sequence sets the variable table from "PAGE" to "HIMEM-&1000" (using BASIC
parlance). Note the use of the $A register and the $X register pair. The CLEAR
statement is necessary to set the internal pointer to the actual top of the
variable table to $VL - if this is not done the machine may crash when you next
try to define a variable, rather like changing PAGE in BASIC and not typing
NEW.

D deS Breakpoints $BO..$B7

Used only by the J and C commands, $BO..$B7 are not initialized by GREMLIN.
They may be individually set and printed or alternatively the CB command clears
them all and the LB command lists them.

Page-9

GREMLIN Section=5

5.1.6 Sideways ROM handling: $ROM
The restrictions which apply to GREMLIN commands in relation to debugging and
examining ROMs have been described in section-4. On entry to GREMLIN, examining
memory ahove 8000 Hex (Sideways ROM area) will reveal GREMLIN itself.
Ordinarily it would only be possible for a ROM to examine itself, i.e. the
currently selected sideways ROM. The $ROM system variable in GREMLIN allows
user-selection of any resident ROM to be examined. For instance, if the BASIC
ROM were resident in socket number 15 (&0F Hex) then after entering the
command :

$ROM==&0F <RETURN>

the BASIC ROM could be disassembled, single-stepped, etc. Changing $ROM to
another value will instantly select that ROM for examination by GREMLIN.

It may be useful to set the memory pointer ($M) to &B0O00 and then select
different values of $ROM. Each time a new value is selected, the header of the
ROM in that socket is displayed, so that all socket contents can be catalogued
without even opening the machine.

5.2 Switches

Switches basically provide the user with a choice between two options (just as
a light switch provides the choice of having a light ON or OFF). Some switches
have already been encountered in previous sections; some switches will be
described later. The purpose of this section is simply to describe the SW
statement and give a summary of all switches.

5.2.1 The switch command
SYNTAX : SW (<switchlist> 0/1)*
The syntax of the SW command may look complicated, but is quite straightforward
in reality. One or more switches may be set in a SW command, so the name(s) of
the switch(es) are refered to in the syntax as the ¢switchlist>, which may be
any series of valid switch names. The switches listed in the <{switchlist)> are
all set to the value 'l' or '0', i.e. ON or OFF respectively, according to the
following digit given specifically as a 1 or O character (and NOT a variable).
Another list may follow the first, allowing one list of switches to be set 'ON'
and another list of switches 'OFF', all in a single command. For instance, to
set the JE switch to 1 (i.e. ON) and reset the DR and BF switches (i.e. turn
them OFF), the command would be:

SW JE 1 DR BF O <RETURN>

It is important to note that switches may not take the value of variables, but
must be explicitly set to the value 'l' or '0'.
The eight valid switch names are listed below, together with their default
settings

SWITCH DEFAULT
NAME SETTING
HX St 1
HN eivre 1
SE sloie 1
AO vas 0
SE cos 0
DR veie 0
BF ats 0
JE s 0
Page-10

L0 U B R B

(N EEEEEENEN

GREMLIN Section-5

Resetting all the switches to their defaults would be achieved with the
command :
SW HX HN SE 1 AO SE DR BF JE O <RETURN>

Note that it is perfectly acceptable to set just one switch with the SW
command, e.g. to disable update of the status display use the command:
SW SE 0 <RETURN>

Summary of switches
Presented below is a summary of all eight switches and their uses.

5.2.2 Number format :

HX - Use Hex numbers
HN - expected Hex input format
BF - BASIC Format

Format of all numbers input or output is controlled by these switches.
HX sets the number base:

HX=1 sets Hex input/output,

HX=0 sets decimal.
With either setting of HX the "&" prefix may be used to force the number to be
understood as Hexadecimal (similar to BASIC). The two other flags HN and BF are
only relevant when HX=1.
BF governs ONLY output, causing the '&' symbol (representing Hex) to be printed
as a prefix to all Hex numbers. This could be simply for user preference,
though it is designed to allow output from the disassembler to be reassembled
by BASIC, in which the '&' symbol is a necessary part of the syntax.
HN governs both output and input. It causes GREMLIN to expect subsequent
numbers input to be in Hexadecimal if they start with 0-9 or A-F. Therefore the
command PRINT A would print 'A' as the Hex number, rather than assuming it to
be the variable A. Setting HN 'off' will cause the opposite to be assumed,
i.e. all Hex numbers must start with one of the characters (0-9), so that
inputting the number &FF as just FF would cause it to be interpreted as a
variable named "FF", whereas it should be input as OFF. Alternatively, use the
'&' symbol to force Hex input regardless of the setting of HX or HN, i.e. input
the number as &FF. Assuming Hex numbers to start with the digits 0-9 is
inconvenient for entering lots of Hex numbers, but is far more convenient
wheninputing a mixture of variables and numbers.

Examples: inputting the numbers 255 and 127 decimal (&FF and &7F Hex) :-

HX BF HN

0 . « 255 127

1 1 . &FF &7F (output only)

1 0 1 FF 7F (default setting)

1 0 0 OFF ¥

e« « o &FF &T7F (input forced with '&'")

In summary HN and BF affect numbers as follows:
HN=0: leading character = "Q".."9"
HN=1: leading character = "0".."F" ("0".."9" for decimal)
BF=0: standard printing
BF=1: BASIC-format printing using "&" for Hex.

Page-11

GREMLIN Section-5
5.2.3 Disassembler effects :

DR - Disassemble Relative

BF - BASIC Format

DR controls the disassembly of branch instructions into either absolute or
relative format. For example, while normally we may have :—
701E DO EO .. BNE 000
setting DR=1 would give :-
701E DO EO .. BNE $M-1E
BF flag has an additional effect in this respect; it causes P% to be used
instead of $M, so setting BF=1 would give :—
701E DO EO .. BNE PZ-&1E
So that the disassembled branch instruction is compatible for re-assembly in
BASIC.

In summary:

DR 0: absolute disassembly

DR 1: relative disassembly

BF 0: normal output

BF 1: relative branches refer to PZ.
Try finding a branch instruction in the MOS, setting P%Z to point to it, and
watching the disassembly on the status display change as you alter these flags.

5.2.4 Status display :
SE - Status Enable
PF - Printer Flag (Send status to printer only)

SE enables or disables the status display. When enabled, the status is
automatically updated after each command. The actual updating takes time and
can therefore be an annoyance whilst ¥EXECing an assembly file for instance.
Disabling it does not immediately remove it from the screen, rather it is
simply not updated, providing a large increase in speed of assembly from file,
amongst other things. Disabling the status and pressing CIRL-Z will restore the
full screen for use, rather than just the lower half.

PF controls printer output, and is explained fully in section 7.

In summary :-
PF O Printer under ctrl-B control
PF 1 Commands and special status to printer
SE 0 No status
SE 1 Enable status.

Page-12

” 9
&

”

?

t

L
N EEEEEEREEEEEREEEEE R

fTeMA"OBEADTDEAADADLADAAAN

L L

=

GREMLIN Section-5
5:2:5 Two Pass Assembly :
AO - Assembler Option.

AO allows the assembler to be used in a two-pass mode by EXECing a file, and is
explained fully in section 8. In short, it determines whether the current value
of the location pointer $M (equiv. P%Z in BASIC) is assigned to undefined
variables (forward references to labels...first pass) or whether an error
message is generated (...pass two) as the alternative.

In summary :-
AO 0 enables normal "No such variable" error
AO 1 assignes $M to undeclared variables.

5.2.6 Enabling Jump commands :
JE - Jump Enable

JE enables use of commands which may cause a machine crash/data corruption etc.
if used inadvertently. The commands enabled/disabled are :

J — Jump to address and execute with breakpoints;

C - Continue execution after breakpoint exit;

S - Single-step execution.
Initially these commands are disabled (JE=0) so that an attempt to use any of
the above will result in a "Not enabled" error message.

In summary :-

JE=0 disables use of S, J, C Commands.
JE=1 enables use of S, J, C Commands.

Page-13

GREMLIN Sectlon-O

6 THE EXPRESSION EVALUATOR

GREMLIN's expression evaluator is based on that of the language called "C'". An
such it combines economy of expression with power in use, and has extreme
flexibility. To the BASIC programmer GREMLIN's many features may seem rather
unusual and take some getting used to, but at the simplest level it may be used
just like BASIC's with only a few exceptions.

Since GRIMLIN is primarily a debugging tool, floating point mathematics etc.
would be a little too excessive, so number. handling is limited to two-byte
unsigned integers. Bytes are treated in a special way, and string manipulation
is minimal being limited to single-character usage. No comparison operators are
provided, since they have proved unnecessary in use.

Trying to use GREMLIN's expression evaluator without reading the detalla of
this section is not recommended. Read it through once so that you know what to
expect. If you are impatient to try everything then you are likely to obtain
seemingly unpredictable results. You have been warned !

The final arbiter of questions concerning the expression evaluator is the
syntax specification in section-11. The syntax description may look rather
incomprehensible, but at least all the operators are listed and explained
there.

PRINT <expr> (,<expr>) ...

The PRINT command will display the values of one or more expressions, similar
to the statement of the same name in BASIC. (It does not have the string
printing capabilities of BASIC). Where a list of expressions is given, the
expressions are separated by commas. The PRINT command will be used widely in
this chapter for illustration.

6.1 Operators: + - * [% & } t <« »

An expression consists of TERMS separated by OPERATORS (referred to as 'ops').
The definition of a 'term' will be given later but, for the present, suffice to
say that variables, numbers, etec, are all classed as ‘'terms',
There are 10 ops (operators) as listed above. Unlike most expression
evaluators, GREMLIN's has no operator precedence, so the command :-

PRINT 1+2%3
for instance, will yield 9 as the result (i.e. 1+2, all multiplied by 3). AN
BASIC this statement would result in 7, since the multiplication has a higher
precidence and would be performed before the addition.

Page-14

€9
€9
¢ 9
€9
€9
e
¢ 9
€ >
€9
€9
€9
€ s
€9
€9
€9
€9
€9
€9
€9
()
€9
()
(30

GREMLIN Section-6

Summary of Operators

a+b Add a and b.

a-b Subtract b from a.

a¥*b Multiply a and b.

a/b Divide a by b. Then take integer result.

a%b Take MOD or 'remainder', such that
a/b*b+(a%b) equals a.

a&b Perform bit-wise a AND b.

ajb Perform bit-wise a OR b.

atb Perform bit-wise a EOR b ('Exclusive OR').

a<<b Shift a left by b bit positions.

a>>b Shift a right by b bit positions.
All of these operators except << and >> are present in BASIC (though with
different names/symbols). Their effects should be sufficiently obvious to avoid
lengthy explanations.

6.2 Terms

The terms of an expression may be anything from a simple number to a whole
sub-expression in brackets. Before discussing these, a more detailed look at
variables is necessary.

6.2.1 Variables

Variable names must start with a letter and continue with alphanumeric
characters. They may be upto 254 characters long and all characters are
significant. Upper and lower—case characters are distinguished (as in BBC
BASIC).

Variables must be DECLARED before they may be used (undeclared variables are
reported with a "No such variable" message). The "." command is used to define
variables, e.g.

.VARL
declares VARl and assigns to it the current value of §M. VARl may be
initialized to another value if desired ($M is used to support the use of
variables as labels in assembly code), e.g.

.VAR1=1234
sets VAR] to the value 1234. Now typing :

PRINT VARL * 2
(spaces optional) or even :

PRINT VARI<L1
will yield 2468 as expected (remember from the summary of ops that '<<n' means
logically shift-left by n bit positions, i.e. <<1 is equivalent to multiplying
by two).

Declaring a variable already in existence is legal: the variable is simply
reassigned the current value of $M (or the expression on the right-hand side of
the "=" if present).

Associated Commands :
CLEAR
Deletes all variables by setting the internal top-of-variable-table pointer to
$VL (n.b. $VL is the low pointer of the variable table).
LVAR
Lists all current variables and their values.

Page-15

GREMLIN Section-06
6.2.2 Numbers

A term may be simply a number, rather than an expression. The format of numbers
depends on switch settings as explained in section 5. In addition to this, a
character may be given between quotes, in fact an entire string of characters
may be given but only the first character will be used, resulting in its ASCII

value. As with strings used in the "P" and "F" commands, the full *KEY syntax
is available.

6.2.3 unary operators: + - | < >
Like BASIC, GREMLIN provides a number of unary operators. In GREMLIN, they are
all implemented as symbols, as listed below :—
+ ... Has no effect. Used in the assembler to
avoid confusion in certain circumstances.
- ... Performs two's complement, or negation.
! ... Performs one's complement, or NOT operation.
< ... Takes high byte
> ... Takes low byte - these two are useful
with the assembler.
For instance, typing
. X=2052 or
PRINT <X

.X=&804

gives :-
8
which you could also have obtained with
PRINT X>>8 (shift right one byte)
or
PRINT X/256
In summary :—
X*256/256 equals X<<8>>8 equals »X

(X MOD 256)

etc.
The "-" unary operator will never yield a "negative" result but will perform a
correct two's complement operation, for instance :-
PRINT -1
gives

65535 (or FFFF Hex).

6.2.4 Null operator : @
The @ operator is simply a means of accessing one of GREMLIN's internal
calculation registers. It returns the value of the last expression evaluated,
It saves repeating an immediately previous expression and is useful in commands
like "D" and "T" where :

D *(*0OFFFE+l) *(*OFFFE+1)+0A0
(which disassembles the first 160 decimal bytes of the IRQ routine), for
instance, may be replaced by

D *(*OFFFE+1) @+&A0
Apart from this, the value of @ is unpredictable.

Page-16

caH"DPDA2T"DPP2A2N
¢ oo o o e ¢

e DYTEEDADADEADPDAAAAANA
7 I B TR T T A T A T A

GREMLIN Section-6
6.2.5 Assignment operators (1): = ==
Assignment (setting a variable to a value) is the first area in which GREMLIN
departs radically from BASIC. GREMLIN does not have conditional statements and
does not have to allow a comparison of equivalence. Therefore if it finds
VAR1=5 it can only be an assignment operation and nothing else. So that in
GREMLIN the statement :-
PRINT VAR1=0 will carry out the assignment, then print the result.
The first two assignment ops perform simple assignment, "=" assigns double-byte
words; "==" assigns a single byte. (The choice of == for one byte and = for two
bytes may seem a little illogical, but a single = is the 'normal' case and so
the shortest option to type is sensible.)
A 'term' may be composed of such an assignment :

PRINT X=3

PRINT (X=3)+2

PRINT X=3+2
etc. Assignment ops must have an ADDRESS on the left hand side to assign to.
Variables count as addresses but numbers obviously do not (but see "#" and "§"
below). The right-hand side of an assignment op is an expression, not a term.
This means that assignops have a very low priority, hence the brackets in the
second example above. It also means they evaluate right-to-left, allowing
multiple assignment. Try typing

A

.B

A=B=X=0

PRINT A,B,X
and see that all are zero. Be careful with brackets:
A=(B=X=0) is legal enough but (A=B)=(X=0) is not, as (A=B) is not an
address. This example also shows that the "=" sign is never used as a
comparison operator as in BASIC: GREMLIN has no looping constructs and thus
needs no comparisons.
The byte assignop "==" is not important except assigning to registers (see
section 5) and using with "¥" (see below).

6.2.6 Assignment operators (2).
There are ten more assignment ops, all of the form :
op=
where "op" is one of the ops and precedes an '=' symbol. For example :-
X+=2
performs the same function as
X=X+2
This is a very common construct and the assignment ops are extremely useful in
abbreviating expressions. In general, any expression of the form
X=Xop¥
may be abbreviated to :-
X op= Y
This extends even to using multiple assignments etc. For instance, it is
possible to produce a sequence of square numbers by typing
X=0
Y=-1
¥KEY4 PRINT X+=Y+=2{M
and repeatedly pressing key f4. In BASIC, f4 would have to be
*EY4 Y=Y+2:X=X+Y:PRINT X|M

Page-17

GREMLIN Sectlon-6
6.2.7 Incrementing ops: ++ —
It is often desirable to be able to automatically increment a variable after
using it, This is much more useful when looping constructs are allowed but can
be of use in the assembler too. To print X and increment it, type :

X=0

PRINT X4+

PRINT X
Similarly X-- decrements X after using it. It is also possible to increment or
decrement before using X, for example :

X=0

PRINT 44X
will yield 1. Naturally these 'inc ops' apply only to variables: ++l 18 as
meaningless as 1=X+3. Inc ops have high precedence and may be used in
expressions; for instance to produce a series of triangle numbers, type

.X=0

.Y=0

*KEY4 PRINT Xeb= ++Y)M
and keep pressing f4., Note that the "+" and symbols are somewhat
overloaded: ambiguities may be resolved by putting spaces in suitable
positions. In fact the expression above would work perfectly without spaces,
but

PRINT X=X4+++Y
is NOT equivalent - it would be interpreted as
PRINT X=X++ +Y

6.3 Addresses and numbers: *, =,
Inc ops and assignment ops by their nature only operate on addresses. A number
may be used as an address by preceding it with "*" while the reverse operation
is performed using "+". For instance, typing

CLEAR

X

PRINT =X
yields the same value as

PRINT $VL+2
which is the start of the variable table, plus 2 for the name "X" and a length
marker. The "*" operator performs the reverse operation:

SW X 1

PRINT *202
will give the start of the BRK routine - i.e. the contents of location 202 lex,
The effect of "*" is similar to BASIC's "°" except that it operates on a
different word size. Thus

PRINT *=X
and
PRINT =*X
are both equivalent to simply PRINT X. Beware, however, of using '*' in

assignments, Two things to watch out for: firstly, the ever present problem of
confusion between the expression evaluator and command interpreter, which la
simply resolved by adding spaces; secondly the syntax of "*" belies the fact
that it operates on a whole TERM, including assignment ops etc. Thus :-
*1234=2
works perfectly, sending 2 to location 1234 - because
it must use an address as provided by the "*". But
X=1234
#X=2

cannot work on 1234,

Page-18

|

fereerH”PPEADADIE2AN

¢ ¢ 0O OO ¢ ¢ ¢

e ADAAEADADADADDA
¢ 0000 & OO OE OO

GREMLIN Section-6

assigns 2 to X because the "=" can operate on X, as it is an address. The
correct syntax is

*(X)=2
which has the desired effect. Note that with
(*X)=2
the "=" will be ignored altogether because (*X) is a — 'the contents of'

location X. We emphasise, USE CARE with "*",
Finally "*" may be used to assign bytes:

is exactly the same as
P 123

in that it puts a byte into memory and increments $M.

6.4 Points to watch

The expression evaluator stops as soon as it finds something which it cannot
understand. Depending on how deep into an expression an error occurs and what
type it is, you will get either a "No such variable" or "Missing)" message, or
sometimes nothing at all, when the mistake is subtle - such as placing an
assignment op after a number (not an address) - it may just stop and not report
an error, in which case the wrong result will have been evaluated. It is this
that makes it very important to practise the expression evaluator - assignment
ops, incrementing ops, "*" and "+" in particular - if you're not sure of it, to
eliminate all possibility of undetected error during assembly. The worst errors
are those that are not reported.

Page-19

GREMLIN Section-7

7 PRINTERS AND GRAPHICS.

Special thought has gone into the area of debugging graphics programs. This is
handled by sending status output to the printer and/or spool file while the
graphics output from the user program is allowed full use of the screen. This
allows even single-stepping of multi-byte PLOT instructions whilst monitoring
the screen.

71 Screen modes.

GREMLIN works in any screen mode. However, no status is output in 20-column
modes and mode must be changed using the MODE command or GREMLIN will get
confused about screen dimensions. The screen is measured every time MODE is
invoked and status display altered to suit. This ensures compatibility even
with the U.S. versions of the BBC Micro.

MODE <expr>

Sets screen mode to <expr>. Note that mode 7 is usually preferable from a
speed point of view because the status display takes so long to update in other
modes.

72 GREMLIN output devices
These are controlled by the switch PF. On entry PF=0. PF controls four output
devices of the BBC Micro, which the are enabled and disabled in various ways by
the 0.S. Below, FX3<{x> represents the xth bit of the FX3 byte:
VDU: The normal screen display.

FX3<1> disables;

in addition VDU6 enables, VDU21 disables.
BPRN: the printer enabled by ctrl-B.

FX3<2> disables;

in addition VDU2 enables, VDU3 disables.
SPOOL: the spool file.

FX3<4> disables;

in addition *SPOOL <fsp> enables, *SPOOL disables.
PRN: the independent printer.

FX3 bit 3 enables.
PF controls the setting of FX3 during status output, user machine-code output
and GREMLIN command output. Thus any attempt to set FX3 on the user's part
will have very temporary effects. However, the user has complete control over
VDU6/21, VDU2/3 and *SPOOL, and can separately enable BPRN, the VDU and SPOOL
using these commands.

7.3 Sources of output.

GREMLIN divides its output sources into 3 groups, command, status and user.

These are routed to different devices according to PF.

Command output includes the typing of the command line, the output of such

commands as PRINT, D and T, and error messages.

User output consists only of that which is produced by JSR OSWRCH (OSASCI,

OSNEWL) instructions within the user's code, while he is single-stepping or

continuous-executing it (not CALLing it; this is treated as a command).

Status output is simply the status display, as sent after command execution and
during single-stepping or continuous execution after breaks.

Page-20

e ARARRADRAADDIADADADAAADADADEDEADTDEYO™N

o & ¢ ¢ & & 0 0 0 8 0 0

GREMLIN Section-7
7.4 Normal debugging: PF=0

GREMLIN is entered with PF=0. This causes status to be sent to VDU (unless in
a 20-col mode) while commands and user output go to VDU, BPRN and SPOOL. This
means it is perfectly legitimate to use ctrl-B and *SPOOL and the output will
be what appears on the lower half of the screen.

7.5 Debugging graphics programs: PF=1

Graphics programs would suffer from two complaints in normal mode: GREMLIN
output getting in the way, and interference with multi-byte PLOT (etc)
sequences caused by using the VDU. So the VDU is given over to the user alone
in PF=1 mode, while commands and status are sent to PRN and SPOOL. BPRN is
disabled.

A special status panel is used with the printer, as it is obviously desirable
to keep information down to the minimum usable. It shows the registers,
program and one line of memory only, in a format that has been designed to look
good on 40-, 80- and 132-column printers. As usual the disassembled
instruction is the next one to be executed, so some predictions can be made.
While single-stepping etc in this mode, it will be necessary occasionally to
step out of the debugging process to alter register, look at a different area
of memory, etc. While doing this, it would perhaps be desirable to turn the
status display off to avoid wastage of paper, for which purpose the SE switch
must be used.

Other effects of PF=1 are that tabulations in response to the "T" command are

always produced in 16-column format, even in 40-column screen modes.

Page-21

GREMLIN Section-8
8 THE ASSEMBLER - Introduction

The GREMLIN assembler is designed to be wused either for
single-instruction entry, e.g. for making small changes to routines already
assembled in memory, or for the entry of whole programs. In either case, the
assembler has access to the variable-handling and expression-evaluating
facilities of GREMLIN. Long assembly files are handled simply as individual
instructions being entered, except that they will be input by *EXEC from a
pre-prepared file instead of direct from the keyboard. This means that assembly
files are produced in conjunction with an external text editor, and corrected
by that means as well.

It is assumed throughout this section that SW HX 1 HN O is active, thus Hex
numbers beginning with a numeric digit are recognised, giving freedom in
variable usage. The '&' symbol will be used for clarity in certain instances
(& indicates a Hex number).

8.1 The assembler

The GREMLIN assembler syntax is quite standard and should not cause any
problem. The purpose of this section is to describe the use of related commands
and facilities for two-pass assembly etc.

Assembly statements are entered one per line and may start with a
'.label' as in BBC BASIC. It is NOT necessary to start with a special symbol
(e.g. the left-arrow in BASIC), neither is a termination symbol required. This
means that assembly statements may be mixed freely (on separate lines) with
other GREMLIN commands.

Commands may be entered individually at any time, but the source
statements are not retained, rather they are assembled and forgotten. To
assemble programs of more than a few statements it is strongly recommended that
a text editor (e.g. WORDWISE) is used to create a source file. The source file
is then assembled by using the Operating System *EXEC command, causing the file
to be read in as if entered as individual statements from the keyboard. Some
additional support commands will be required for assembly of long files,
e.g. assigning an area of memory for variable storage, performing two passes to
cater for forward references, setting the code origin, etc.

The memory pointer $M is used by the assembler as a pointer to the next
address into which code will be assembled. Setting $M to the code origin should
therefore be one of the first steps in an assembly file.

Two pass assembly is achieved by use of the AO switch, rather than with
the 'OPT pass' method employed in BBC BASIC. On the first pass, the A0 switch
should be set 'ON' with the command : SW A0 1 and turned off again for the
second pass with SW AO 0. This means that on the first pass an undeclared
variable will be assigned the current value of $M. On the second pass any
variable which is still undeclared will be reported as such with an error
message and assembly will be halted. This is designed specifically to allow the
use of jumps, branches, calls, etc. to be used with variables (labels) which
are not defined until a later section in the code (forward references).

Certain steps will be carried out whenever one or more files are to be
assembled. They can be assigned to a function key for ease of use when repeated
assembly/re-assembly is required. Listed over the page are some of these
general steps.

Page-22

eanDHDAAEAEADAADPDRAADADAAAAAAAADAADTDLEEAEAN

@ 0 0 O O O O O O e e Ve O e &8 o

@ &0 ¢

GREMLIN Section-8
Assembling one or more long files, general steps required :

COMMAND PURPOSE
1) .origin=&3000 Define a variable as code origin.
2) .VL=¥1A00 Set variable storage LOW pointer.
3) .VH=X2FFF Set variable storage HIGH pointer.
4) CLEAR Reset variable storage with CLEAR.
5) SWHX O Set switch for default Decimal input ?
Pass one...
6) $M=origin Set memory pointer to code origin.
7) SW A0 1 Set Assembler Option switch 'ON'.
8) *EXEC progl Assemble the file.
Pass two...
9) $M=origin Set memory pointer to code origin.
10) SW A0 O Set Assembler Option switch 'OFF'.
11) *EXEC progl Assemble the file.
Assembly complete...
12) PRINT $M Print next free address (optional).
13) $M=$PC=origin Reset $M and $PC to start of code.

8.2 Labels

Labels in GREMLIN operate in much the same way as in BBC BASIC. A
variable is created (or re-assigned) by preceding it with a dot (.), for
example :-
.label
would create a variable called 'label' and assign to it the current value of
$M, the memory pointer.

8.3 Using GREMLIN commands in assembly files

The 'P' command will be frequently used within assembly files, being the
substitute for the BASIC-(II) commands EQUS, EQUB, EQUW, EQUD. Users of
BASIC-(I) will not be familiar with these, but simply they allow strings,
bytes, words, or double words to be 'put' into memory. The 'P' command is more
versatile, allowing any mixture of strings, bytes, etc. to be put at the
current $M address. Programs designed for assembly by BASIC will need changing
to make use of the 'P' command if they currently use either the indirection
operators or the BASIC-(II) EQU commands mentioned. A search-replace operation
from the wordprocessor can be employed if a lot of changes are necessary. See
section-2.2 for details of the 'P' command.

Setting the $M variable to a different value during assembly is perfectly
acceptable. It will cause further assembly code to be positioned at the new
location according to $M. For instance, to reserve &l100 bytes of memory, use
the command :-—
$M=$M+&100 (or $M+=100)
at the required position in the file.

Other commands such as PRINT will be used within assembly files, though
few other commands would be used as frequently.

Page-23

GREMLIN Section-8
Both passes over several files (being assembled one after another) can be
achieved with relative ease. The last command in each file should be *EXEC
followed by the name of the next file. The final file will obviously not end
with such a command. It is suggested that when assembling several files, a
general 'start' file and a general 'end' file are created. The start file would
perform some of thc steps described earlier in section 8.1, but would also
define some general variables such as 0.S. routines, zero page memory usage
etc. An example is shown below :

*I General Start File.
SW HX HN 1
SW SE 0

*] STANDARD VARIABLES:-

.OSRDCH=0OFFEQ

.OSASCI=OFFE3

.OSNEWL=0FFE7

.OSWRCH=OFFEE

.OSWORD=0FFF1

.OSBYTE=0FFF4

.OSCLI=0FFF7

.delt=7F

.cr=0D

1£=0A

.bell=7

.cls=0C

.ctrlu=15

.keybuf=5000

*: Zero Page Usage :

.acclba=70

.accléb=72

.acc8a=74

.ptrl=75

.ptr2=77

.maxlen=78

*= Set Code Origin

.ORG=3000

$M=0RG

*=assemb1e first file

*EXEC filel
Notice that the status is disabled at the start, in order to speed assembly by
removing the delay caused by automatic status update. Status is re-enabled in
the 'end' file. An example of an end file is given below :

*:End Routine For Multi File Assembly
SW A0 O

SW SE 1

*= Reset Status Display

$M=$PC=0RG

Page-24

e AAAEADARDERAADDPDRAADADIDAAEAADAADDADDADD2AN

" EEEREEEE.

GREMLIN Section-8
8.4 Setting breakpoints

The eight breakpoints can be set from within an assembly program file by
setting the system variables $BO-$B7. It is also possible to allocate the next
available breakpoint at a position by making use of the expression evaluator's
facilities, together with the way that breakpoints are implemented. The
breakpoints are stored three bytes apart, starting with $BO. If a counter is
set up called, say, NBP for the number of breakpoints so far allocated, then at
each location where a breakpoint is to be set a single expression can be used
to allocate the next available breakpoint. The expression would be :-

*(3 * (NBP++ % 7) + &$BO) = $M

which simultaneously calculates the address of the next breakpoint, sets it to
$M, and increments NBP. The "% 7" part is included to ensure that memory
beyond the eight breakpoints is not overwritten if NBP accidentally exceeds the
value of eight. Spaces are used above for clarity and can be omitted (except
the first one, which would cause an OSCLI call if omitted). The beginning of
the assembler program should Clear Breakpoints with a CB command. An LB command
to list all the breakpoints set may be usefully added at the end of the file.

8.5 Commenting assembly files

No special symbol is required to precede comments. After interpreting an
assembly statement, GREMLIN moves onto the following line. Therefore it is
possible to put comments on lines following assembly statements. An important
exception to this rule is caused by the internal workings of GREMLIN. When a
label appears at the start of a line, multiple assembly statements WILL be
interpreted, up to the end of the line. A comment appearing on such a line
would be misinterpreted as an assembly statement. In summary : DO NOT COMMENT A
LINE THAT STARTS WITH A LABEL.

Because no symbol is used to indicate that a comment follows, the syntax
does not allow for a line containing only a comment and nothing else. The
reason this is not implemented is that the facility is already provided by the
operating system. Any line that starts with the asterisk symbol '*' followed
immediately by the double-bar symbol '= ' is ignored. For instance, a line
entered as :-

*#) This is a comment

would be passed to the Operating System, which would ignore it.
Examples :-

*= example statements follow

.OSWRCH=&FFEE

.start
LDA £'2' load A with letter z
JSR OSWRCH print character
RTS return.

Ensure that a space or other delimeter appears before comments to separate them
from the preceding command.

Page-25

GREMLIN Section-8
Possible problems with syntax
Like many 6502 assemblers this one treats any opening round-bracket after

the mnemonic as an attempt at indirect addressing, and any "A" as an attempt at
accumulator addressing (where valid). For example,

LDA(ADDR+1)<<2
would produce a "Bad addressing mode" error because (indirect) addressing would
be expected, which is not supported by LDA. Similarly,

ROL ACCUM
would be assembled as ROL A without any error being flagged at all - which is
far worse. If it is necessary to start the operand with these symbols, use the
"4+" OPERATOR to avoid confusion. In this circumstance, the '+' symbol serves no
function, except as a delimeter, whereas it will be used for addition in the
correct place. For instance:-

LDA+(ADDR+1)<<2

ROL+ACCUM

Page-26

¢ & & & &6 OO OGO VOO O O O OV

T2 a2 DHDDPA2DPTPHANDTDEADPDP*2N
[

n
e @

” N
o 9

GREMLIN Section-9

9 SUMMARY OF COMMANDS AND SYNTAX

COMMANDS — Must all begin with the first character of the command, not preceded
by spaces.

SETTING THE MEMORY POINTER :
M <expr>
$M=<expr>
Add to Memory Pointer :-
+ <expr>
Subtract from Memory Pointer :-
- <expr>
Indirect Memory Pointer via value currently pointed to by $M :-
IND

ASSEMBLY STATEMENTS :

Comments may optionally follow the assembly statement, EXCEPT when the line
starts with a '.label', when further assembly statements may (optionally)
follow on the same line.

Either: <.label> (<Assembly statement>)

Or: <{Assembly statement> (<comment>)

Inserting data at Memory Pointer :-
P <data>
Data is inserted according to $M. <data> may be any series of:
<{expr»>; - assembled as a word
<expr>(,) - assembled as a byte
<{assembler statement>
"string" - ¥KEY syntax

Searching with the 'F' command :-

Search memory for specified data, starting at $M+l. When is found the
status is updated and $M points to the data. <data> may be any of the types
listed for the 'P' command above.

F <data)>
Searching for several occurrances is easily achieved by repeatedly issuing the
find command (by copying it from the input line above).

Displaying memory in Tabulated form :-
Display memory between two limits in tabulated form.
T <start> <end>

Disassembly :—
Memory is Disassembled according to the parameters listed below.
D <strt> <end> (S) (F"filename'"(heading))
{strt> - Start address, expression allowed.
<{end> - End address, expression allowed.
(S) - Capital letter S, show source code.
(F"string" - Capital letter F followed by a filename, sends output to
a spool file.
(title)) - Any string, placed at start of spooled file.

Page-27

GREMLIN Section-
Moving an area of memory :-—
Move a specified amount of memory from source address to destination
address. source and destination areas may overlap.
IM <source)> <{dest> <amount)>

Executing Code :-
Similar to BASIC, the CALL statement causes execution of code until a
return from the routine.
CALL <address>

Single-stepping :-

Single-stepping will commence from the current location held in the PC
register. The 'S' command MUST be enabled with the Jump Enable switch before it
will operate.

SW JE 1

S
Press the RETURN key after each step to perform the next step, or any other key
to enter other commands.

Execute code with breakpoints :-—
Code is executed until a breakpoint is encountered. The 'J' command MUST
be enabled with the Jump Enable switch.
SW JE 1
J <address>
When a breakpoint is encountered, press RETURN to continue execution, or any
other key to enter other commands.

Continue after breakpoint :-
Execution (as with 'J' command above) continues from address currently in
$PC. The 'C' command MUST be enabled with the Jump Enable switch.
SW JE 1
Cc

Clear all Breakpoints :-
CB

List all breakpoints :—
LB

Operating System commands :-
The entire line following an asterisk '*' is passed to the 0.S. in the
usual manner.
¥<0S command>

Printing values on screen :—
Printing is according to current format, set by HX, BF, switches etc.
PRINT <expr> (,<expr>)..

Initialising and assigning variables :-

Variables are first declared with the dot symbol '.' and may optionally
be assigned a specific value at the same time. Once a variable has been
created, it need not be preceded by the '.' symbol and may be used in
expressions.

.<{varname> (= <expr>)

Page-28

T nHh Hn»HHHHHNA

TEEEEEEREE]

)

e o

GREMLIN Section-9
Clear all variables :-—
CLEAR

List all variables :-
LVAR

Select screen mode :-—
MODE <expr>

Setting switches :
Any switch(es) can be set to the 'on' or 'off' settings with the 'SW'
command .
SW <switch list> <setting> ({switch list> <{setting>)
Where:-
{switch list)> - is a list of one or more two-character switch names;
{setting> - is the digit 1 or 0. Variables are not allowed.

SWITCHES - Listed with initial value :
HX 1 HeX number base
0 = decimal
1 = hex

HN 1 Hex Number interpretation
0 = must start with numeric
1 = may start with alphabetic

DR O Disassemble Relative
0 = normal disassembly
1 = Branch instructions disassembled into relative format.

BF 0 BASIC Format
0 = normal numeric printing
1 = BASIC-compatible hex printing preceded by "&", and PZ in relative
disassembly

AO O Assembler Option
0 = Error message if variable not declared
1 = Assign value of $M to undeclared variable

PF O Printer Flag
0 = normal use
1 = debugging graphics programs

SE 1 Status Enable
0 = no status display
1 = normal display

JE 0 Jump Enable

0 =38, J, C commands disabled
1 =28, J, C commands disabled

Page-29

GREMLIN Section-9

SYSTEM VARIABLES :
All used in expressions with § prefix. Initial value in brackets if
initialized.

M - Memory pointer

PC - Program counter

A, X, Y, P, S - corresponding processor registers

VL (0600), VH (0800) — Low and High ends of variable area

DL (0000), DH (8000) - Low and High ends of user program area.
BO, .., B7 - Breakpoints.

ROM - Current sideways ROM.

SYNTAX OF EXPRESSIONS :

expr: term [op term] ...
term:
number
address
address assignment op expr
address +
address —
++ address
-- address
+ address
unary op term
@
(expr)
address:
variable
* term
op:
+ add
- subtract
* multiply
/ divide
% modulus
& bitwise AND
: bitwise OR
t bitwise EOR
<< rotate left

> rotate right
assignment op:

- word assign
== byte assign

t=, =, *=, /=, %=, &=, =, t=, K=, D=
unary op:

+ no operation

- negate

! complement

< high byte

> low byte

Page-30

gy

AOADAAADTAAAANDDDDPAN
O &9 0 800 00 &0 00 e e e

L
&S

”
<

L

LU)
e e

”

GREMLIN Section-10
10 ERROR MESSAGES

All give error code zero (though there is no way of finding this out by
standard commands) and print a message on the screen. All files are closed -
to prevent a ¥*EXECed assembler file from running amok — but screen mode,
printer control, etc, remain unaltered on receipt of an error. There are
several ways in which errors may arise: this section is accordingly subdivided.

It is necessary to know the workings of the command interpreter to interpret
some error messages: the interpreter first checks input to see if it represents
a valid assembler mnemonic; then it checks for a command - this MUST begin in
column zero, ie with no leading spaces; if it had still had no success it
passes the command line to the expression evaluator. This means that, where
there might be confusion between an expression like

S=3
and a command like
S

the expression must be preceded by spaces. This is especially relevant when
using the "¥'" operator to start an expression.

10.1 Command errors.
Escape
Results from pressing ESCAPE during command input, disassembly or memory

tabulation.

Bad switch
Attempt to define a non-existant switch. Will also result if the SW command

string does not end in "0" or "1", or possibly if an expression is used instead
Of llo" or "1".
Not enabled
Attempt to use the S, J or C commands without first typing
SW JE 1

to enable them.

Filename?
Bad filename after the "F" option in the disassembler command. Quotes must be
used.

10.2 Assembler errors

Addressing mode?

Attempt to use illegal addressing mode. May also be result of
misinterpretation, which can be avoided by using "+".

Assembler syntax?

Bad formation of assembler operand, eg wrong index or missing closing bracket

on indirect addressing modes.

Byte
Immediate data will not fit into byte. Use ">" operator.

Page-31

GREMLIN Section-10

Out of range
Branch destination out of range. Must be replaced by JMP.

10.3 Expression evaluator errors
10.3.1 Variables
No room

An attempt to define a variable with the command with insufficient room
left in the variable table area. Try increasing $VH.

nn

Bad variable
An attempt to define a variable with an illegal name was made.

No such variable

An attempt to access a variable which had not been defined, or a mistyped
command interpreted as an expression, or an attempt to type a hex number not
beginning with a numeric character while HN=0, or certain malformed
expressions, will give this message. Like its BASIC counterpart, this covers a
multitude of sins.

No such system variable
Whatever follows a "$" sign must be a system variable. This message will
result if it isn't.

10.3.2 Others

Missing)
Closing bracket needed and not found in correct place.

Divide by zero
The left-hand operand of the /, %, /= or 7= operators is zero.

Page-32

]
UK

i

A e

= - O~ R R g v

