Melting effect in 8086, using only register manipulation

Last Updated or created 2023-10-05

(NOTE, Dosbox can’t cope with the register speed, use real HW or PCem)

Effect using a edited photo I made from fireworks ..

Generating a RAW image and Palette, a in a new way

This bash script to convert BMP to Raw and a compiled colorpalette.
(Note: this converts to 8 bit depth, the assembly code in the final assemby program converts to 6 for VGA mode 13h

So this time, i wonΒ΄t have to use the standard VGA palette as mentioned in previous posts.
(Gimp colors > indexed (255 colors) ; save as BMP, exclude colorspace information)

I’m using identify to extract the colorpalette, which i’m converting to DB entries for the fasm compiler

#!/bin/bash
if [ $# -lt 1 ] ; then
	echo "$0 filename"
	exit 0
fi
size=$(stat $1 | grep Size | awk '{ print $2 }')
skipsize=$(( $size - 64000))
dd if=$1 of=$1.raw skip=$skipsize bs=1

identify -verbose $1 | awk '/Colormap:/,/Rendering/' | grep -v Colormap | grep -v Rendering | awk '{ print $2 } ' | tr -d '()' | while read ; do echo "db $REPLY" ;done > data.asm
fasm data.asm

Code

use16
org 0x100

; variables
CRTC_INDEX = 0x03D4
CRTC_DATA = 0x03D5
INPUT_STATUS = 0x03DA
HRETRACE = 0x01
VRETRACE = 0x03 ; bit 3 =8 ?
MAXIMUM_SCAN_LINE = 0x09
LINE_OFFSET = 0x13

; bar
upperbar = 1
lowerbar = 399

jmp start
; memory locations for data
updown dw 1
direction DB 0
filename DB "firework.raw",0
oldline db 0


start:
; set mode 320x200 256 colors palette
	mov ah,0x0
	mov al,13h
	int 10h

; clear screen routine, not really needed
clearscreen:
	push ax
	mov ax, 0a000h
	mov es, ax
	pop ax
	xor di, di
	inc ax
	mov cx, 64000 ; 320x200
	rep stosb
; set colors
; call file loader 
	call Loadfile
	call setpalette

; Move loaded file to Screen memory
	mov ax,0a000h
	mov es,ax
	mov ax,6000h
	mov ds,ax
	mov si,0
	mov di,0
	mov cx,320*200/2
	rep movsw

	push cs
	pop ds

;	store org effect2 values
	mov dx, CRTC_INDEX
	mov al,LINE_OFFSET
	out dx,al
	mov dx, CRTC_DATA
	in al,dx
	mov [oldline],al


; after displaying the image or displaying an error, wait for keypress to exit
waitforkeyloop:
	call effect 	; Calling the effect
	MOV AH,1
	INT 16h
	JZ waitforkeyloop
	XOR AH,AH
	INT 16h
Exit:
	MOV AX,3	; default text mode 3
	INT 10h
	MOV AX,4C00h	; exit to dos (terminate process)
	INT 21h
; loop ends here

; Loads raw 64000 bytes image to screen memory
Loadfile:
	push ds
	MOV DX,filename
	MOV AX,3D00h	; open filehandle
	INT 21h
	JC Err1
	MOV BX,AX   	; filehandle
	MOV CX,64000
	mov dx,06000h 	; destination 0000:a000h - Screen memory
	mov ds,dx
	MOV DX,0
	MOV AH,3Fh	; read from file
	INT 21h
	JC  Err1
	MOV AH,3Eh	; close filehandle
	INT 21h
	pop ds
RET

; print error
Err1:
	push cs		; make ds same as cs
	pop ds
	MOV AX,3	; default text mode 3
	INT 10h
	MOV DX,TxtErr1	; error
	MOV AH,09h
	INT 21h
	RET

effect:
	cli		; stop interrupts
	call waitvretrace	; wait for vertical retrace

; gets start scanline and direction
	mov ax,[updown]
	mov cl,[direction]
	cmp cl,0		; 0 move down
	jz	addcounter
	dec ax
	dec ax
	cmp ax,upperbar  	; reached upper bar ?
	jnz gohere ; jnz
	mov cl,0
	mov [direction],cl
	jmp gohere
addcounter:
	inc ax
	inc ax
	cmp ax,lowerbar		; reached bottom bar?
	jnz gohere 	;jnz
	mov cl,1		; change direction
	mov [direction],cl
gohere:
	mov [updown],ax		; store new location

; al = scanline, call wait for scanline
	call longwaithretrace
; other effect
        mov dx, CRTC_INDEX
        mov al, LINE_OFFSET
        out dx,al
        mov dx, CRTC_DATA
        mov al, 0
        out dx,al


; wait scanlines (height of bar)
	mov ax,400
	mov cx,[updown]
	sub ax,cx
	call longwaithretrace

; restore effect2
        mov dx, CRTC_INDEX
        mov al, LINE_OFFSET
        out dx, al
        mov dx, CRTC_DATA
        mov al, [oldline]
        out dx,al
		
	sti	; start interrupts again
	ret

; routine that fixes 8 to 6 bits and sets palette
setpalette:
	; 8 bits to 6 
	mov si,coltab
	mov cx,256*3
	rest:
		mov al,[si]
		shr al,2
		mov [si],al
		dec cx
		inc si
		cmp cx,0
		jnz rest
; now set colors
	mov dx,3c8h
	xor al,al
	out dx,al
	inc dx
	mov si,coltab
	mov cx,256*3
	rep outsb
ret


; this waits for vertical retrace
waitvretrace:
	mov dx,INPUT_STATUS
	waitv1:
		in al,dx
		test al,8
		jnz waitv1
	waitv2:
		in al,dx
		test al,8
		jz waitv2
ret

; routine that waits for horizontal retrace
waithretrace:
	mov cl,al
	mov dx,INPUT_STATUS
	waith1:
		in al,dx
		test al,1
		jnz waith1
	waith2:
		in al,dx
		test al,1
		jz waith2
		dec cl
		cmp cl,0
		jnz waith1
ret

longwaithretrace:
	mov cx,ax
	mov dx,INPUT_STATUS
	lwaith1:
		in al,dx
		test al,1
		jnz lwaith1
	lwaith2:
		in al,dx
		test al,1
		jz lwaith2
		dec cx
		cmp cx,0
		jnz lwaith1
ret
TxtErr1 DB "firework.raw not found!",7,10,13,"$"

coltab: 
include 'data.asm'

Rasterbar Copperbar line short code

Last Updated or created 2023-10-05

Not interesting for most of you, but here is the minimal code to display a line using toggling the background color at a specific retrace.

https://www.henriaanstoot.nl/2023/09/12/copperbar-effect-with-image-on-80×86/

3C8h (R/W):  DAC Address Write Mode
 bit 0-7  The color data register (0..255) to be written to 3C9h.
 Note: After writing the 3 bytes at 3C9h this register will increment, pointing to the next data register.

3C9h (R/W):  DAC Data Register
 bit 0-8?  Color value
 Note:  Each read or write of this register will cycle through first the
        registers for Red, Blue and Green, then increment the appropriate
        address register, thus the entire palette can be loaded by writing 0 to
        the DAC Address Write Mode register 3C8h and then writing all 768 bytes
        of the palette to this register.

3DAh
Input Status #1 Register (Read at 3BAh (mono) or 3DAh (color))
7	6	5	4	3	2	1	0
                            VRetrace			DD
 
VRetrace -- Vertical Retrace
"When set to 1, this bit indicates that the display is in a vertical retrace interval.This bit can be programmed, through the Vertical Retrace End register, to generate an interrupt at the start of the vertical retrace."
DD -- Display Disabled
"When set to 1, this bit indicates a horizontal or vertical retrace interval. This bit is the real-time status of the inverted 'display enable' signal. Programs have used this status bit to restrict screen updates to the inactive display intervals in order to reduce screen flicker. The video subsystem is designed to eliminate this software requirement; screen updates may be made at any time without screen degradation."

Code (fasm)

use16
org 0x100

INPUT_STATUS = 0x03DA

start:

; set mode 320x200 256 colors palette
	mov ah,0x0
	mov al,13h
	int 10h

; press key to exit
waitforkeyloop:
	call effect 	; Calling the effect
	MOV AH,1
	INT 16h
	JZ waitforkeyloop
	XOR AH,AH
	INT 16h
Exit:
	MOV AX,3	; default text mode 3
	INT 10h
	MOV AX,4C00h	; exit to dos (terminate process)
	INT 21h

effect:
	cli		; stop interrupts
	call waitvretrace	; wait for vertical retrace
	mov al, 0    ; set color index 0 to black (needs to be converted to a function
	mov dx, 3c8h
	out dx, al
	inc dx       ; now 3c9h
	mov al, 0h
	out dx, al   ; set R = 0
	mov al, 0h
	out dx, al   ; set G = 0
	mov al, 0h
	out dx, al   ; set B = 0

	mov al,30h

; al = scanline, call wait for scanline
	call waithretrace
	mov al, 0    ; set color index 0 to white
	mov dx, 3c8h
	out dx, al
	inc dx       
	mov al, 255
	out dx, al   
	mov al, 255
	out dx, al   
	mov al, 255
	out dx, al   

; wait 1 scanlines (height of bar)
	mov al,1h
	call waithretrace

; draw black again
	mov al, 0    ; set color index 0's rgb value
	mov dx, 3c8h
	out dx, al
	inc dx       ; now 3c9h
	mov al, 0
	out dx, al   
	out dx, al   
	out dx, al   
		
	sti	; start interrupts again
	ret

; this waits for vertical retrace
waitvretrace:
	mov dx,INPUT_STATUS
waitv1:
	in al,dx
	test al,8
	jnz waitv1
waitv2:
	in al,dx
	test al,8
	jz waitv2
	ret

; routine that waits for horizontal retrace
; al sets number of retraces
waithretrace:
	mov cl,al
	mov dx,INPUT_STATUS
waith1:
	in al,dx
	test al,1
	jnz waith1
waith2:
	in al,dx
	test al,1
	jz waith2
	dec cl
	cmp cl,0
	jnz waith1
	ret

My bash file to copy com file to floppy image to use in PCem.

PCem right button disk change drive A:

fasm one-line.asm
# disk.img is een msdos boot floppy image
sudo mount -o loop disk.img mountpoint
sudo cp *com mountpoint/
sudo cp *bmp mountpoint/
sudo umount mountpoint

Flute note detection with leds

Last Updated or created 2023-10-05

Yesterday I got my MAX9814 in, last night I got it working.
Used the leds from a lightpainter project to test controlling the leds.

Why is it, that it doesn’t matter how much components and ledstrips you buy, you alway need more.

First parts of the Scale, then a part of Farewell to Uist

Arduino Nano, using FastLeds library and FFT.
Ledstrip is WS2812, and the MAX8914 microphone

Busy day: PHP, Python, RP2040 and Frequency detection.

Last Updated or created 2023-10-05

While watching a online python course, I was writing the code for a music guessing game (Highland Bagpipe Tunes)
The core is working, now it’s a matter of filling this “pruts” with tunes.

Switching between python, php, bash and C is a nightmare πŸ™‚

A screenshot of work in progress

Then the postman came .. with goodies.
I needed the MAX9814 analog microphone with amplifier, all of my other sensors were not up to the task.

So I switched to this WIP with the MAX9814.
I want to make a little gadget using an Arduino and 9 leds, which uses FFT to blink which note I am playing on my Highland Pipes.

So detecting is working, now I have to attach a bunch of leds.

First test using Arduino Cloud (I still prefer PlatformIO) But this is better than the old IDE. (Note, you have to install an agent to connect your browser to a board)

Next thing I did today:
Getting my waveshare RP-2040 Zero working with micropython.

Great the little NeoPixel Led on the board.

Steps to get this working:

  • Install Thonny
  • Connect the rp2040 via USB with the boot button pressed
  • place RPI_pico.xxxx.uf2 on the mounted usb disk, it will reboot
  • Run Thonny connect and run a test program

Want to run program @boot ?
save -> to device, and call main.py

Micro Adlib player in Assembly

Last Updated or created 2023-10-05

Plays RAW adlib songs in 100 lines of code … kindda

Using information from here:
https://moddingwiki.shikadi.net/wiki/RAW_Format_(Adlib)

And using fasm to compile I can play captured raw songs.

But something is still off ?!?

It sounds a little different, and I need to implement a better timer routine. (Below my version and opencubicplayer)

This is a test for my bootloader, playing music from my bootblock!

CODE

use16
org 0x100

ctrlreg=0388h
datareg=0389h


mainloop:
	; set speed (Byte 8,9 from the raw file)
	mov ax,[tune+8]
	mov [clockspeed],ax
	; call player
	call rawreg
	; wait 0.5 sec for exit
	mov bx,6
	call waitmore
	jmp exit

rawreg:
	mov bx,tune+0ah		; start of song at offset ah

; order registerdata, register!
; Are there more control codes? ???

lraw:
	mov cx,[bx]
; reg = 2 - check data
	cmp ch,2
	je checkreg2
; reg = 0 - cyclewait
	cmp ch,0
	je cyclewait
; data = FFFF - end song - end play routine
	cmp cx,0ffffh
	jne skipr
	ret

cyclewait:		; waits cl times waitroutine
cylloop:	
	call waitlong
	dec cl
	jnz cylloop
	inc bx
	inc bx
	jmp lraw

checkreg2:
; check low opl
	cmp cl,1
	jne checkh
	mov ch,0
	mov [highlow],ch
	jmp incandret
checkh:
; check high opl
	cmp cl,2
	jne check00
	mov ch,1
	mov [highlow],ch
	jmp incandret
check00:
; set new speed
	cmp cl,0
	jne incandret
	inc bx
	inc bx
	mov ax,[bx]
	mov [clockspeed],ax
	
incandret:
; next double byte in the song please
	inc bx     
	inc bx     
	jmp lraw

skipr:
; sends data to the control and data registers
	mov dx,ctrlreg
	mov al,[highlow]
	cmp al,0
	je regokay
	inc dx
	inc dx
regokay:
	mov al,ch
	out dx,al
;	call waitshort ; not needed for newer adlib cards
	mov dx,datareg
	mov al,[highlow]
	cmp al,0
	je regokay2
	inc dx
	inc dx
regokay2:
	mov al,cl
	out dx,al
	call waitlong
	inc bx
	inc bx
	jmp lraw

waitshort:
	push ax
	push cx
	push dx
	mov cx, 0      ;HIGH WORD.
	mov dx, 010h ;LOW WORD.
	mov ah, 86h    ;WAIT.
	int 15h
	pop dx
	pop cx
	pop ax
	ret

waitlong:
	push bx
	push ax
	push cx
	push dx
	mov cx, 0      ;HIGH WORD.
	mov dx, [clockspeed]
	shr dx,1
	mov ah, 86h    ;WAIT.
	int 15h
	pop dx
	pop cx
	pop ax
	pop bx
	ret

waitmore:
; in bx == 12h is 1 sec
; destroys ax,bx,cx,dx
	push ax
	push bx
	push cx
	push dx
	mov ax,0h
	int 1ah
	add dx, bx
	mov bx,dx
waitloop:
	mov ax,0h
	int 1ah
	cmp bx,dx
	jnz waitloop
	pop dx
	pop cx
	pop bx
	pop ax
	ret

exit:
	mov dx,0388h
	mov al,0b0h
	out dx,al
	inc dx
	xor al,al
	out dx,al
	mov ax,04c00h
	int 21h

clockspeed: dw 0

highlow:	db 0

tune:
	file 'RAWSONG.RAW'

Rewrote 8086 bootblock trackloader

Last Updated or created 2023-10-05

Loading a 320×200 image from 14 cilinders. There is no msdos on the floppy!

9 sectors, 14 cilinders, 1 head * sector size (512 bytes) = 64512 bytes

Mode 13h (320×200 265 colors)

Cuting the raw part from a BMP (see previous post)

root@battlestation:/mnt/# ls -la MAD.bmp
-rw-rw-r-- 1 fash fash 65078 Sep 14 15:57 MAD.bmp

I need 64000 bytes (320x200)
65078-64000 = 1078

root@battlestation:/mnt/# dd if=MAD.bmp of=mad.raw skip=1078 bs=1
64000+0 records in
64000+0 records out
64000 bytes (64 kB, 62 KiB) copied, 0.441618 s, 145 kB/s

I use debug to write to the sectors

debug mad.raw
-w100 0 9 7f
(write from address 100 drive=0 startsector=9 (cylinder 1) and 7f sectors long

Wrote a little sector viewer to debug/view data written.

  • r – read sector again
  • s – next sector (shift previous)
  • c – next cylinder (shift previous)
  • h – toggle head 0 – 1
  • p – load palette from current 2 sectors
  • l – clear screen
  • 1 – goto graphic mode
  • 2 – goto text mode and show sector,head and cylinder info
  • q – quit
  • -/+ tweak palette offset ( was needed for debugging

I will post the code after some code cleaning and adding some comments

Copperbar effect with image on 80×86

Last Updated or created 2023-10-05

I’m still having problems getting a working floppy drive in my machine.
(Broken FDD card, drive errors etc)

The raster bar (also referred to as rasterbar or copperbar) is an effect used in demos and older video games that displays animated bars of colour, usually horizontal, which additionally might extend into the border, a.k.a. the otherwise unalterable area (assuming no overscan) of the display

When you look at the left side of the screen you see the color bar in the border (outside the normal pixel screen)

I first tried to get it working in DosBOX, but thats a mess.
Good for simple emulation but not hardcore register manipulation.

Below dosbox

Three examples below are in PCem

Not waiting for vsync, gives some idea how much timing is left when doing bars
Other effect added
Effect as on the real hardware except emulated using PCeM
use16
org 0x100

CRTC_INDEX = 0x03D4
CRTC_DATA = 0x03D5
INPUT_STATUS = 0x03DA
MAXIMUM_SCAN_LINE = 0x09
LINE_OFFSET = 0x13

jmp start

updown DB 30
direction DB 0
filename DB "shoes.bmp",0

start:
; set mode 320x200 256 colors palette
        mov ah,0x0
        mov al,13h
        int 10h

; clear screen routine, not really needed
clearscreen:
        push ax
        mov ax, 0a000h
        mov es, ax
        pop ax
        xor di, di
        inc ax
        mov cx, 64000 ; 320x200
        rep stosb

; call file loader
        call Loadfile

        push cs
        pop ds

; after displaying the image or displaying an error, wait for keypress to exit
waitforkeyloop:
        call effect     ; Calling the effect
        MOV AH,1
        INT 16h
        JZ waitforkeyloop
        XOR AH,AH
        INT 16h
Exit:
        MOV AX,3        ; default text mode 3
        INT 10h
        MOV AX,4C00h    ; exit to dos (terminate process)
        INT 21h

Loadfile:
        MOV DX,filename
        MOV AX,3D00h    ; open filehandle
        INT 21h
        JC Err1
        MOV BX,AX       ; filehandle
        MOV CX,0FFFFh   ; size
        mov dx,0a000h   ; destination 0000:a000h - Screen memory
        mov ds,dx

        MOV DX,0
        MOV AH,3Fh      ; read from file
        INT 21h
        JC  Err1
        MOV AH,3Eh      ; close filehandle
        INT 21h

        RET
; print error
Err1:
        push cs         ; make ds same as cs
        pop ds
        MOV DX,TxtErr1  ; error
        MOV AH,09h
        INT 21h
        RET

effect:
        cli             ; stop interrupts
        call waitvretrace       ; wait for vertical retrace
        mov al, 0    ; set color index 0 to black (needs to be converted to a function
        mov dx, 3c8h
        out dx, al
        inc dx       ; now 3c9h
        mov al, 0h
        out dx, al   ; set R = 0
        mov al, 0h
        out dx, al   ; set G = 0
        mov al, 0h
        out dx, al   ; set B = 0

; gets start scanline and direction
        mov al,[updown]
        mov ah,[direction]
        cmp ah,0
        jz      addcounter
        dec al
        cmp al,30
        jnz gohere
        mov ah,0
        mov [direction],ah
        jmp gohere
addcounter:
        inc al
        cmp al,100
        jnz gohere
        mov ah,1
        mov [direction],ah
gohere:
        mov [updown],al

; al = scanline, call wait for scanline
        call waithretrace
        mov al, 0    ; set color index 0 to blueish
        mov dx, 3c8h
        out dx, al
        inc dx
        mov al, 11h
        out dx, al
        mov al, 22h
        out dx, al
        mov al, 33h
        out dx, al
; wait 10 scanlines (height of bar)
        mov al,10
        call waithretrace

; draw black again
        mov al, 0    ; set color index 0's rgb value
        mov dx, 3c8h
        out dx, al
        inc dx       ; now 3c9h
        mov al, 0
        out dx, al   ; set R = 11h
        mov al, 0h
        out dx, al   ; set G = 22h
        mov al, 0h
        out dx, al   ; set B = 33h

        sti     ; start interrupts again
        ret

; this waits for vertical retrace
waitvretrace:
        mov dx,INPUT_STATUS
waitv1:
        in al,dx
        test al,8
        jnz waitv1
waitv2:
        in al,dx
        test al,8
        jz waitv2
        ret

; routine that waits for horizontal retrace
waithretrace:
        mov cl,al
        mov dx,INPUT_STATUS
waith1:
        in al,dx
        test al,1
        jnz waith1
waith2:
        in al,dx
        test al,1
        jz waith2
        dec cl
        cmp cl,0
        jnz waith1
        ret

TxtErr1 DB "shoes.bmp not found!",7,10,13,"$"

Boot loader with image 320×200 256 colors.

Last Updated or created 2023-10-05

This is a work in progress, below are my Lab notes.

I want to rewrite pieces we made for a demo, loading images and effects from a floppydisk bootloader.

Without looking at old code (which was written using Masm), I wanted to learn the steps using Fasm.

I started with a boot sector program, It should do the following.

  • Set graphic mode, and start a trackloader
  • Load sector 2 and 3 which contains the color palette for the image.
  • Next sectors, cylinders and heads contain the raw image

I got it working, half that is.
In the past I used real disks, and now a virtual disk, maybe thats the difference?

First Code

use16
org 0x7c00

mov ah,0x0
mov al,0x13
int 10h

mov ax, 0a000h
mov es, ax
xor di, di
mov ax, 50
mov cx, 64000
rep stosb

loophere:
	jmp loophere


times 510 - ($-$$) db 0

dw 0xaa55

Compiling and starting:

fasm mybootblock.asm
qemu-system-x86_64 --drive format=raw,file=mybootblock.bin

This works, it sets the graphical mode and clears the screen.

Second Code
Skipping the int 25h version

## Track read part
    xor ax, ax    ; DS = 0
    mov ds, ax
    cld
    mov ah, 2h    ; int13h function 2 track read
    mov al, 2     ; number of tracks ( should be 2 for reading only palette)
    mov ch, 0     ; from cylinder number 0
    mov cl, 2     ; the sector number 2 - second sector (starts from 1, not 0)
    mov dh, 0     ; head number 0
    xor bx, bx    ; BX = 0
    mov es, bx    ; ES = 0
    mov bx, 7e00h ; Offset from above
    int 13h

    call setpal

## End part with setpalette routine
## appending palette.colors
## and a raw image

setpal:	
    mov dx,3c8h
    xor al,al
    mov di, ax
    out dx,al
    inc dx
    mov cx,256*3
    mov si,07e00h
    rep outsb
    ret
times 510 - ($-$$) db 0

dw 0xaa55
include 'palette.colors'

times 2048 - ($-$$) db 0
file 'image.raw'

Seems there is still a header on the RAW file, lets look at how I made this.

NOTE! .. Below converts an image with a STANDARD VGA palette, not a custom one as used above

Looking with ghex at the file I saw that there was a header 0x415 bytes large.
(Probably still palette colors in there)

dd if=shoes.bmp of=cutshoe.bmp bs=1 skip=1078 (0x415h + 3?)
worked for me

Loading the extra tracks didn’t work for me?!?!
But how could I define tracks/sectors and heads on a virtual floppy?

I tried to write sectors using debug.com

start dosbox
imgmount a: /tmp/floppy.img -t floppy
debug.com bootsector.bin
-r bx 01 

-r cx 512
; set bx:cx for size
-w 100 0 0 1
; write from address 100, drive 0 (a), sector 0, number of sectors

; testing
-l 100 0 0 1
;load sector to addr 100 drive 0 sector 0 number of sectors 

This used to work with real disks on a real machine, not in dosbox ?!?!

my way to create a disk in linux

dd if=bootblock.bin of=disk1.img bs=512 count=1 seek=0
dd if=palette.col of=disk1.img bs=512 count=1 seek=1 # or 2?
dd if=shoes.raw of=disk1.img bs=512 count=10000 seek=17

It looks like I can’t read futher than 18 sectors on a virtual floppy.
What next? Head=1? Cylinder=1?
Below the info from a floppy image before altering.

DOS/MBR boot sector, code offset 0x3c+2, OEM-ID “MSDOS5.0”, root entries 224, sectors 2880 (volumes <=32 MB), sectors/FAT 9, sectors/track 18, serial number 0x1c2a0d0f, unlabeled, FAT (12 bit), followed by FAT

Appending the RAW to a executable gave me problems to.
(Without making a bootdisk)

Above and below weird data. Appending the data to the executable needs some work also.

At least for today let me display this image correctly πŸ™‚

use16
org 0x100

; set mode 320x200 256 colors palette
	mov ah,0x0
	mov al,13h
	int 10h

; clear screen routine, not really needed
clearscreen:
	push ax
	mov ax, 0a000h
	mov es, ax
	pop ax
	xor di, di
	inc ax
	mov cx, 64000 ; 320x200
	rep stosb

; call file loader 
	call Loadfile

; after displaying the image or displaying an error, wait for keypress to exit
waitforkeyloop:
	MOV AH,1
	INT 16h
	JZ waitforkeyloop
	XOR AH,AH
	INT 16h
Exit:
	MOV AX,3	; default text mode 3
	INT 10h
	MOV AX,4C00h	; exit to dos (terminate process)
	INT 21h

Loadfile:
	MOV DX,filename
	MOV AX,3D00h	; open filehandle
	INT 21h
	JC Err1
	MOV BX,AX   	; filehandle
	MOV CX,0FFFFh 	; size
	mov dx,0a000h 	; destination 0000:a000h - Screen memory
	mov ds,dx

	MOV DX,0
	MOV AH,3Fh	; read from file
	INT 21h
	JC  Err1
	MOV AH,3Eh	; close filehandle
	INT 21h

	RET
; print error
Err1:
	push cs		; make ds same as cs
	pop ds
	MOV DX,TxtErr1	; error
	MOV AH,09h
	INT 21h
	RET

filename DB "shoes.bmp",0
TxtErr1 DB "shoes.bmp not found!",7,10,13,"$"

Tomorrow .. back to the track loader

Mikrotik Wifi, 80386 and Lilygo streaming

Last Updated or created 2023-10-05

Quiet days, I working on some art.

But here are the last ‘prutsen’

My current Wifi setup

I’ve got a Wifi outside of my network for guest and emergency. ( 2 SSIDs)

Then a main Wifi router in my livingroom, one in my workshop/studio and one in the Attic (Electronics Lab)

So three main Wifi AccessPoints. These all have the same SSID’s but on different frequencies. That way i’ve got roaming in and outside my house.
Also some virtual accesspoints are configured.
I’ve got a main, folkband, IOT, guest-inside all on 2.4Ghz and 5Ghz.

I watched a lot of YT presentations about Mikrotik Wifi.

So I ended up with DFS safe channels 20Mhz for 2.4 and 20/40Mhz Ce for 5Ghz. (subchannels for each after some frequency scanning)
(2.4 does a failback to 20Mhz whenever there is even one client detected which connects only on this band. Such as some old IOT stuff)
2.4 in only 1,6 and 11 no overlap, each on another device.
300Mbps is sufficient for my wifi πŸ™‚

I’ve got accesslists in place and i’m going to read into kicking a client when the signal strenght is below -50dB

80386 (DX) Computer

Besides my 8088 and 8086 machines I needed a machine which could run our old demo’s. So I bought a new toy.

It has 8Mb Ram and runs at 40Mhz.

I’ve noticed that many of my VGA register manipulation code, can’t be run on a modern VGA monitor, I need to use a CRT for that .. Another thing to buy

Lilygo T-Display S3 Streaming

Not my code: https://github.com/Steve5451/esp32-stream-desktop
A very cool project!

Needed to fix arduino code, due to the TFT_eSPI library issues.
And I’ve got a S3 with another resolution, but that was an easy fix.
Then needed to reinstall nodejs with another version.
Had to modify the code because the tcp server would not start.
Weird errors logging, but in the end fixed … very cool

I probably end up designing a 3D printed case that looks like a monitor or tv.