Tag Archives: arduino

New POC / WIP Rfid Read/Write

yes, again. Another change.

UPDATE: Working example at bottom!

Micros*ft Surface Running Linux!

I don’t want IDs and Paths in a Home Assistant automation.
The RFIDs can store more than enough data to store the paths to albums.

I Also tested with ESPHOME in HA, but you can’t write tags.

ESPHOME Config for my RFID device (NOT USED ANYMORE)

esphome:
  name: rfidtag
  friendly_name: rfidtag

esp8266:
  board: d1_mini

mqtt:
  broker: IPMQTTBROKER

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "xxxxxxxxxxxxxxxxxx="

ota:
  password: "xxxxxxxxxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Rfidtag Fallback Hotspot"
    password: "xxxxxxxxxxxxxx"

captive_portal:
    
spi:
  clk_pin: D5
  miso_pin: D6
  mosi_pin: D7
rc522_spi:
  cs_pin: D8
  update_interval: 1s
  on_tag:
    then:
      - mqtt.publish:
          topic: rc522/tag
          payload: !lambda 'return x;'
  on_tag_removed:
    then:
      - mqtt.publish:
          topic: rc522/tag_removed
          payload: !lambda 'return x;'

The next iteration of my Rfid controller will have a write function for the RFID tags.

  1. Stick a tag on a cover art piece of cardboard. (see below)
  2. Read path from data sector.
    • Send path to player automation
  3. Send path to program using MQTT or website if needed.

Not sure yet, also want to implement a wifi manager on the wemos.

Changes on above idea:

  • Paths are too long, I could not work out how to create a working program using this.
  • I stopped using paths, instead I’m using the Logitech media server album IDs.
  • Using two python scripts, I can use one for programming the card, and another script to control LMS.

How does it work

RFid device is connected to the network.

Start query.py on your LMS server.
Search for an album name, it will present an ID and Album name in a list.
Enter the ID you want to program, or 0 to exit.
(This will also reset the programming mode)

Place an empty or previously programmed tag on the device.
It will write the album ID on the tag.

Then it will start the album.
Changing the tags will also just change the album playing.

(NOTE: My genre spotify player still works using this method, using the same device)

A second python script will read the Mqtt topic and control the Squeezebox player.

Python Code DB Query

import sqlite3
#paho-mqtt
import paho.mqtt.publish as publish

host = "IPMQTTBROKER"
port = 1883
topic = "spotify/rfid/in/write"
auth = {'username': 'xxxx','password': 'xxxxx'}
client_id = "spotithing"

def readSqliteTable(albumname):
    try:
        sqliteConnection = sqlite3.connect('/var/lib/squeezeboxserver/cache/library.db')
        cursor = sqliteConnection.cursor()
        albumname = "%" + albumname + "%"
        cursor.execute("select * from albums where title Like ?",
               (albumname,))
        records = cursor.fetchall()
        for row in records:
            print("Id: ", row[0],row[1])
        cursor.close()

    except sqlite3.Error as error:
        print("Failed to read data from sqlite table", error)
    finally:
        if sqliteConnection:
            sqliteConnection.close()

album = input("Album name ? ")
readSqliteTable(album)

number = input("Enter ID or 0 to quit : ")
publish.single(topic, "00000" , qos=1, hostname=host, port=port,
        auth=auth, client_id=client_id)
if number == 0:
        exit()
publish.single(topic, number, qos=1, hostname=host, port=port,
        auth=auth, client_id=client_id)
print("Program your tag")
print("Reset/disable writing using exit with 0!")

Python Code Controller (this one needs to be running at all times)

import paho.mqtt.client as mqtt
import urllib.request

def on_connect(client, userdata, flags, rc):  
        print("Connected with result code {0}".format(str(rc)))
        client.subscribe("spotify/rfid/idlms")

def on_message(client, userdata, msg):
        print("Message received-> " + msg.topic + " " + str(msg.payload))  # Print a received msg
        urllib.request.urlopen("http://IPADDRESLMS:9000/anyurl?p0=playlistcontrol&p1=album_id:" + msg.payload.decode() + "&p2=cmd:load&player=b8:27:eb:11:16:ab")
#NOTE also change b8:27:eb:11:16:ab into you players MACAddress!

client = mqtt.Client("digi_mqtt_test")  
client.on_connect = on_connect  
client.on_message = on_message  
client.connect('IPMQTTBROKER', 1883)
client.loop_forever()  

Arduino Code (see schematic in other post)

#include <Arduino.h>
#include <SPI.h>
#include <MFRC522.h>
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <PubSubClient.h>
#define SS_PIN 15
#define RST_PIN 0
MFRC522 mfrc522(SS_PIN, RST_PIN);
  MFRC522::StatusCode status; //variable to get card status
  byte buffer[18];  //data transfer buffer (16+2 bytes data+CRC)
  byte size = sizeof(buffer);
  uint8_t pageAddr = 0x06;  //In this example we will write/read 16 bytes (page 6,7,8 and 9).
                            //Ultraligth mem = 16 pages. 4 bytes per page.  
                            //Pages 0 to 4 are for special functions.           
unsigned long cardId = 0;
WiFiClient net;
PubSubClient client(net);
const char* mqtt_server = "IPMQTTBROKER";
const char* ssid = "MYSSID";
const char* password = "MYSSIDPASS";
String topicStr = "";
byte buffer2[8];

boolean Rflag=false;
int r_len;
char payload[5];
byte value[5];
void setup() {
  Serial.begin(9600);
  SPI.begin();
  mfrc522.PCD_Init();
  WiFi.mode(WIFI_AP_STA);
  WiFi.begin(ssid, password);
  client.setServer(mqtt_server, 1883);
     delay(100);
    client.setCallback(callback);
      delay(100);
    client.subscribe("spotify/rfid/in/#");
}
void reconnect() {
  while (WiFi.waitForConnectResult() != WL_CONNECTED) {
  }
  while (!client.connected()) {
    String clientId = "rfid-";
    clientId += String(random(0xffff), HEX);
    if (!client.connect(clientId.c_str(), "rfidclient", "...")) {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      delay(5000);
    }
  }
  client.subscribe("spotify/rfid/in/#");
}
void callback(char* topic, byte* payload, unsigned int length) {
 
  Serial.print(F("Called"));
   Rflag=true; //will use in main loop
   r_len=length; //will use in main loop
   Serial.print("length message received in callback= ");
   Serial.println(length);
   int j=0;
     for (j;j<length;j++) {
       buffer2[j]=payload[j];
       }
if (r_len < 3) {
  Rflag=false;
  Serial.print(F("Set false"));
}
buffer2[j]='\0'; //terminate string
}

void loop() {
    if (!client.connected()) {
    reconnect();
  }
  client.loop();
  if (!mfrc522.PICC_IsNewCardPresent()) {
    return;
  }
  if (!mfrc522.PICC_ReadCardSerial()) {
    return;
  }
if (Rflag) {
        for (int i=0; i < 4; i++) {
    //data is writen in blocks of 4 bytes (4 bytes per page)
    status = (MFRC522::StatusCode) mfrc522.MIFARE_Ultralight_Write(pageAddr+i, &buffer2[i*4], 4);
    if (status != MFRC522::STATUS_OK) {
      Serial.print(F("MIFARE_Read() failed: (W) "));
      Serial.println(mfrc522.GetStatusCodeName(status));
      return;
    }
  }
  Serial.println(F("MIFARE_Ultralight_Write() OK "));
  Serial.println();
  Rflag=false;
}
  cardId = getCardId();
  char buffer3[10];
  sprintf(buffer3, "%lu", cardId);
  client.publish("spotify/rfid/id", buffer3);
  // Read data ***************************************************
  Serial.println(F("Reading data ... "));
  //data in 4 block is readed at once.
  status = (MFRC522::StatusCode) mfrc522.MIFARE_Read(pageAddr, buffer, &size);
  if (status != MFRC522::STATUS_OK) {
    Serial.println(F("MIFARE_Read() failed: (R)"));
    Serial.println(mfrc522.GetStatusCodeName(status));
    return;
  }

  Serial.println(F("Read data: "));
  //Dump a byte array to Serial
  for (byte i = 0; i < 5; i++) {
    Serial.write(buffer[i]);
       buffer2[i]=buffer[i];
    }
  client.publish("spotify/rfid/idlms", buffer,5);
  delay(1000);
  mfrc522.PICC_HaltA();
}

unsigned long getCardId() {
  byte readCard[4];
  for (int i = 0; i < 4; i++) {
    readCard[i] = mfrc522.uid.uidByte[i];
  }
  return (unsigned long)readCard[0] << 24
    | (unsigned long)readCard[1] << 16
    | (unsigned long)readCard[2] << 8
    | (unsigned long)readCard[3];
}

C64Pico part 3

Today we worked on this project again. (Bigred and me)

There were some problems we needed to fix since last time:

  • It was quite hard to get the correct parts.
    Our display connector was only fitted with connection pins on the wrong side of the connector. (up/down)
    So I bought a connector with both positions populated.
    So we had to replace this hard to solder (40 pin) connector.
  • It was not clear what the orientation should be of the atmega328pb.
    We looked at the pinout, and followed the VCC/GND. But these are also available of the opposite side of the chip. (We missed that)
    Later, we saw a tiny line on the PCB, which showed the pin 1 placement.
    So we had to remove and replace the chip.
    When turning on the power, (with incorrect placement) probably fried R5 (10k resistor), on both our boards.
    Had to replace those also.
  • Programming the atmega328pb was not easy, see below fixes.
  • Compiling the pico firmware resulted in a black screen.
    Below the fixes I had to make to get the screen working.

Other things still to fix.

  • Bigreds screen.
  • atmega328p didn’t work for Bigred, so probably needs to replace with the pb version.
  • My battery controller is not charging.
    See bottom of page
  • Some of my buttons are working. The pewpew and some of the cursor keys (not as I expect, there are some up/down issues)
    And none of the other keys are working.

Some other things we noticed.

  • sdcard: remove partitions, format using mkfs.exfat
    Create a c64 directory on this filesystem where you can put the d64 files!
  • 0402 SMD is far too small for me.
    There is enough room on the board to use 0805 for example.
    Even THT is possible, there are only a few components.
  • Some components are TOO close together, removing a component resulted in other small parts disconnecting also.

My friend Bigred said: If I can see it, I can solder it.
But it is not easy. This probably keeps a lot of people from building it!

Below the diff from the source we got from:

https://github.com/silvervest/MCUME/tree/c64pico

UPDATE 20240501: We needed to clone the c64pico branch!

git clone -b c64pico https://github.com/silvervest/MCUME.git

Then it worked with the screen and keyboard!

Programming the atmega328pb using usbasp

https://www.henriaanstoot.nl/2022/06/30/morse-with-a-attiny85/
Link above shows the programmer.

To get your Arduino IDE up and running

  • Open the Arduino IDE.
  • Open the File > Preferences menu item.
  • Enter the following URL in Additional Boards Manager URLs:https://mcudude.github.io/MiniCore/package_MCUdude_MiniCore_index.json
  • Open the Tools > Board > Boards Manager… menu item.
  • Wait for the platform indexes to finish downloading.
  • Scroll down until you see the MiniCore entry and click on it.
  • Click Install.
  • After installation is complete close the Boards Manager window.

Above settings worked for me, maybe you can also try Programmer: usbasp (slow)

First install the bootloader.

When compiling the keyboard program of silvervest, you can find “Upload using programmer” in the Sketch menu!
(https://github.com/silvervest/c64pico/tree/master/keyboard)

CHARGING using BQ24230RGTT

Maybe I’ve got a problem with the ground plating of the charger.
Also very hard to solder the sides!

Music Cover Art Display using ILI9431

Little Sunday afternoon project.

Two PHP scripts.

Install on your webserver (see previous post)

Resizes images and removes the onkyo header.
(See previous posts)

<?php
// onkyo.php
// write jpeg header
header('Content-type: image/jpg');

$lines = file_get_contents('http://IP-ONKYO-AMPLIFIER/album_art.cgi', false);
$lines = explode("\n", $lines);
// remove weird Onkyo header (3 lines)
$content = implode("\n", array_slice($lines, 3));
print $content;
?>

CoverArt from a squeezeboxserver

<?php    
// squeezebox.php
// leave playerid as is, for the default.
// change to MAC address of player to get coverart specific player
$img = file_get_contents('http://IP-LOGITECH_MEDIA_SERVER:9000/music/current/cover.jpg?player=<playerid>');
$im = imagecreatefromstring($img);
$width = imagesx($im);
$height = imagesy($im);
$newwidth = '240';
$newheight = '240';
$thumb = imagecreatetruecolor($newwidth, $newheight);
imagecopyresized($thumb, $im, 0, 0, 0, 0, $newwidth, $newheight, $width, $height);
//imagejpeg($thumb,'small.jpg'); //save image as jpg
header('Content-Type: image/jpeg');
imagejpeg($thumb);
imagedestroy($thumb); 
imagedestroy($im);
?>

Arduino install:

Start IDE
Install TJpg_Decoder library
Open examples>Tjpeg_decoder>SPIFFS>SPIFFS_web_spiffs
change wifi credentials
and the url to your php script.
  bool loaded_ok = getFile("https://myserver/onkyo.php", "/M81.jpg"); // Note name preceded with "/"

replace bottom part with

 // while(1) yield();
 delay(5000);
     SPIFFS.remove("/M81.jpg");

Arduino Tiny Machine Learning Kit

A while ago I bought a little machine learning kit.

I’ve been reading at listening to ML podcasts and websites.

One on Spotify I liked was:

Also, the following Coursera was interesting
https://www.coursera.org/learn/machine-learning

I’ve been testing using Python on my Laptop.
(see other posts)

And a camera with esp32 using face detection.

See here multiple posts about these experiments.

https://www.henriaanstoot.nl/tag/machinelearning/

Today the first experiments using this kit.

  • Arduino Nano 33 BLE Sense board
  • OV7675 Camera
  • Arduino Tiny Machine Learning Shield
  • USB A to Micro USB Cable
  • 9 axis inertial sensor: what makes this board ideal for wearable devices
  • humidity, and temperature sensor: to get highly accurate measurements of the environmental conditions
  • barometric sensor: you could make a simple weather station
  • microphone: to capture and analyse sound in real time
  • gesture, proximity, light color and light intensity sensor : estimate the room’s luminosity, but also whether someone is moving close to the board
  • Microcontroller nRF52840
  • Operating Voltage 3.3V
  • Input Voltage (limit) 21V
  • DC Current per I/O Pin 15 mA
  • Clock Speed 64MHz
  • CPU Flash Memory 1MB (nRF52840)
  • SRAM 256KB (nRF52840)
  • EEPROM none
  • Digital Input / Output Pins 14
  • PWM Pins all digital pins
  • UART 1
  • SPI 1
  • I2C 1
  • Analog Input Pins 8 (ADC 12 bit 200 ksamples)
  • Analog Output Pins Only through PWM (no DAC)
  • External Interrupts all digital pins
  • LED_BUILTIN 13
  • USB Native in the nRF52840 Processor
  • IMU LSM9DS1 (datasheet)
Gesture test ( yes on a windows surface tablet, but Vincent and I installed linux on it!)

I just started and will update this page, with other experiments.

Note: displaying Arduino output without installing the IDE

stty -F /dev/ttyACM0 raw 9600
cat /dev/ttyACM0
................................
................................
................................
................................
................................
................................
................................
................................
................................
................####............
...............##..#............
..............##...##...........
..............#.....#...........
..............###...#...........
..............##.....#..........
..............##.....#..........
...............#....##..........
...............######...........
................................
................................
................................
................................

Started working on C64Pico with Bigred

A week ago I got the last components delivered to my doorstep.

This project was made by Silvervest and it’s f*ckin awesome.

https://github.com/silvervest/c64pico

I was afraid to start this myself, SMD is on another level for me.
But my good friend Marco said … No problem!

So I ordered components online, which was not easy.
Selecting the correct parts, sizes and options.

These things are really really small

Using tweezers to place the components was even difficult.
The slippery tiny bastard got catapulted everywhere. (Or got stuck on fingers, soldering iron and alike)
Many small components got lost into the 7th dimension. Never to be found again.

Awesome to work on this together, but Marco said that I have to try it myself.
Welllll, I got 3/4 of the ATmega328PB-A perfectly soldered, then I notished that it was crooked.
Desoldering was a mess, and I heated the PCB TOO much with the heatgun.

My messed-up PCB, and f*cked-up IC. Leave it to the professionals.

Next step for me is soldering the 75 mini buttons!

Got a Trinitron display from him, I was looking for this for a long time.

Revisiting the Spotify Cube

In the past I posted about my genre selector for Spotify using a cube.

UPDATE: 20240501 below – using esphome

Most was done using NodeRed and a python script.

Now, I’ve moved it to Home Assistant using a single automation.
(Maybe the Arduino sketch can be made with Esphome also.
But I don’t have time for that)
It still uses the Arduino sketch as before, which uses Mqtt to post the RFID code to Mosquitto.

My new Home Assistant automation

alias: SpotifyCube
description: ""
trigger:
  - platform: mqtt
    topic: spotify/rfid/id
condition:
  - condition: template
    value_template: "{{ trigger.payload in playlistkeys.keys() }}"
action:
  - service: media_player.play_media
    target:
      entity_id: media_player.spotify_fash
    data:
      media_content_type: playlist
      media_content_id: spotify:user:spotify:playlist:{{ playlistkeys.get(trigger.payload) }}
variables:
  playlistkeys:
    "70539770": 2KeRLMmGMxI5UgzE7m0iCx
    "70277626": 37i9dQZF1EQmK1rjZuPGDx
    "69229050": 0SOay3RkjojjevrF5lHMOx
    "70015482": 37i9dQZF1DX9HwI3Crikcx
    "69753338": 0bJvpsn0TDZwIDUjz4d75x
    "69491194": 5f8w3UHlD9Ozz6Y4VHs6kx

Some notes about above script:

  • The MQTT topic is configured in the sketch below
  • The playlist keys are at the bottom
    “RFIDID”: playliststring as can be found in web spotify

Pasted link

Arduino Code

#include <Arduino.h>
#include <SPI.h>
#include <MFRC522.h>
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <PubSubClient.h>

#define SS_PIN 15
#define RST_PIN 0

MFRC522 mfrc522(SS_PIN, RST_PIN);
unsigned long cardId = 0;

WiFiClient net;
PubSubClient client(net);
const char* mqtt_server = "IPMQTTBROKER";
const char* ssid = "MYSSID";
const char* password = "MYWIFIPASSWORD";

void setup() {

  Serial.begin(115200);
  SPI.begin();
  mfrc522.PCD_Init();
  WiFi.mode(WIFI_AP_STA);
  WiFi.begin(ssid, password);

  client.setServer(mqtt_server, 1883);
     delay(100);
    client.setCallback(callback);
      delay(100);
    client.subscribe("spotify/rfid/in/#");
}

void reconnect() {
  while (WiFi.waitForConnectResult() != WL_CONNECTED) {
  }

  while (!client.connected()) {
    String clientId = "NodeMCUClient-";
    clientId += String(random(0xffff), HEX);

    if (!client.connect(clientId.c_str(), "rfidclient", "...")) {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      delay(5000);
    }

  }
  client.subscribe("spotify/rfid/in/#");
}

void callback(char* topic, byte* payload, unsigned int length) {
    String topicStr = topic;
      byte value = atoi((char*)payload);
}

void loop() {
    if (!client.connected()) {
    reconnect();
  }
  client.loop();

  if (!mfrc522.PICC_IsNewCardPresent()) {
    return;
  }

  if (!mfrc522.PICC_ReadCardSerial()) {
    return;
  }

  cardId = getCardId();
  char buffer[10];
  sprintf(buffer, "%lu", cardId);
  client.publish("spotify/rfid/id", buffer);

  uint8_t control = 0x00;
  do {
    control = 0;
    for (int i = 0; i < 3; i++) {
      if (!mfrc522.PICC_IsNewCardPresent()) {
        if (mfrc522.PICC_ReadCardSerial()) {
          control |= 0x16;
        }
        if (mfrc522.PICC_ReadCardSerial()) {
          control |= 0x16;
        }
        control += 0x1;
      }
      control += 0x4;
    }

    delay(0);
  } while (control == 13 || control == 14);

  reconnect();
  client.publish("spotify/rfid/id", "0");
  delay(500);

  mfrc522.PICC_HaltA();
  mfrc522.PCD_StopCrypto1();
}

unsigned long getCardId() {
  byte readCard[4];
  for (int i = 0; i < 4; i++) {
    readCard[i] = mfrc522.uid.uidByte[i];
  }

  return (unsigned long)readCard[0] << 24
    | (unsigned long)readCard[1] << 16
    | (unsigned long)readCard[2] << 8
    | (unsigned long)readCard[3];
}

ESPHOME Config same as above

esphome:
  name: rfidtag
  friendly_name: rfidtag

esp8266:
  board: d1_mini

mqtt:
  broker: 192.168.1.1

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "xxxxxxxxxxxxxxx="

ota:
  password: "xxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Rfidtag Fallback Hotspot"
    password: "xxxxxxxxxxx"

captive_portal:
    
spi:
  clk_pin: D5
  miso_pin: D6
  mosi_pin: D7
rc522_spi:
  cs_pin: D8
  update_interval: 1s
  on_tag:
    then:
      - mqtt.publish:
          topic: spotify/rfid/id
          payload: !lambda 'return x;'
  on_tag_removed:
    then:
      - mqtt.publish:
          topic: spotify/rfid/idremoved
          payload: !lambda 'return x;'

Adding a VGA terminal to my 6502

Using a LilyGo TTGO ESP32 VGA32, I’m connecting my breadboard 6502 to a serial vga terminal with its own keyboard.

Due to a lot of moving around, new places, new homes I dumped a lot of terminal hardware.
Also are those old terminals too big and use too much power.

I’m going to use this DIY screen.
https://www.henriaanstoot.nl/2021/03/24/broken-or-slow-laptop-screen-still-works/

Using the Libraries from Fabrizio Di Vittorio, named FabGL, you can transform this device into a dumb terminal, game device, VIC-20, a 8086 pc and more.
There are even some projects to turn this into a C64.

But the main thing I want to do: A simple terminal.
(I probably revisit the other options again at a later stage)

My Wozmon bios has bare minimum support for serial communication, so i have to do some bitbanging.
(6502 is using a 6551 ACIA)

Sound from the ESP32 VGA board.

  • Chipset: TTGO Micro32 (ESP32 240Mhz dual core processor)
  • Flash memory: 4MB
  • SRAM: 520KB
  • Built-in Bluetooth
  • Built-in Wi-Fi
  • Supply voltage: 3.3V DC or 5V DC
  • GPIO voltage: 3.3V*
  • USB to serial converter: CP2102 or CH9102F (drivers)
  • VGA connection
  • PS/2: keyboard connection
  • PS/2: mouse connection
  • Built-in Li-ion/Li-Po battery charging circuit: TP4054 chip can charge up to 500mA

Three channel mixer for ay-3-8910 is almost done.

At the back the 8 pin single channel lm368 amplifier.
At the front the 3 channel setup.
I still have to tweak the resistors, and potmeters.
Then I can make a permanent PCB, and figure out the connections to the 6502.

At the moment, the Arduino Nano is playing some real sound samples by using the registers of the sound chip.
The music is being played by sending the register dumps directly to the chip.

Much like i’ve been using SID register dumps to play songs in another project.

This is version 0.1 .. do not use.
If its wrong, or can do better please mail me.
Oh it needs a 1k resistor from the 20K’s to ground I think.

Last week’s stuff

Update: https://www.henriaanstoot.nl/2024/01/14/hlk-ld2410b-with-a-wemos-mini-d1-v4-connected-to-home-assistant-using-esphome/

Case for presence detector

Update: BBQ watch

Not posted in the past, new version using ESPHOME and a m5stickc

Previous version using a ESP12
A “watch” with core and environment temperature of my smoker with a alarm, and button for timers.

ESP32 dac’s drawing on oscilloscope ( no additional components)

ESP32 in front of scope, two clips for x and y

For above i used sin/cos functions 2:3, which creates Lissajous figures.
See: https://www.henriaanstoot.nl/1992/01/01/oscilloscope-graphics-using-a-amiga-bonus-vectrex/

3 battery operated buttons (no wires needed) to control my shelly dimmer at the dinner table.

left button on, middle steps per 20% and 3rd button off.
(This cheapass button only sends ON commands)

Node red code

[
    {
        "id": "8190a851.8d02b8",
        "type": "mqtt in",
        "z": "44d7a4fb.e41a5c",
        "name": "domoticz-out",
        "topic": "domoticz/out",
        "qos": "0",
        "broker": "8c74c5f6.9a7a48",
        "inputs": 0,
        "x": 190,
        "y": 600,
        "wires": [
            [
                "543a2fa3.af27c",
                "c70d463.da52ab8",
                "ffa2f6be.afe618"
            ]
        ]
    },
    {
        "id": "543a2fa3.af27c",
        "type": "function",
        "z": "44d7a4fb.e41a5c",
        "name": "Filter IDX + nvalue",
        "func": "var varPayload = JSON.parse(msg.payload);\nvar varidx = varPayload.idx;\nvar varnvalue = varPayload.nvalue;\nif(varidx == 2473)\n{\nmsg.payload = {};\nmsg.payload.turn = \"on\";\nmsg.payload.brightness = 50;\nreturn msg;\n}",
        "outputs": 1,
        "noerr": 0,
        "initialize": "",
        "finalize": "",
        "libs": [],
        "x": 410,
        "y": 600,
        "wires": [
            [
                "d7b0f308db912817"
            ]
        ]
    },
    {
        "id": "c70d463.da52ab8",
        "type": "function",
        "z": "44d7a4fb.e41a5c",
        "name": "Filter IDX + nvalue",
        "func": "var varPayload = JSON.parse(msg.payload);\nvar varidx = varPayload.idx;\nvar varnvalue = varPayload.nvalue;\nif(varidx == 2474)\n{\nmsg.payload = {};\nmsg.payload.turn = \"on\";\nvar count = context.get(\"counter\") || 0;\ncount = (count+1) % 6;\ncontext.set(\"counter\", count);\ncount = count * 20; \nmsg.payload.brightness = count;\nreturn msg;\n}",
        "outputs": 1,
        "noerr": 0,
        "initialize": "",
        "finalize": "",
        "libs": [],
        "x": 410,
        "y": 680,
        "wires": [
            [
                "d7b0f308db912817"
            ]
        ]
    },
    {
        "id": "ffa2f6be.afe618",
        "type": "function",
        "z": "44d7a4fb.e41a5c",
        "name": "Filter IDX + nvalue",
        "func": "var varPayload = JSON.parse(msg.payload);\nvar varidx = varPayload.idx;\nvar varnvalue = varPayload.nvalue;\nif(varidx == 2475)\n{\nmsg.payload = {};\nmsg.payload.turn = \"off\";\n//msg.payload.brightness = 0;\nreturn msg;\n}",
        "outputs": 1,
        "noerr": 0,
        "initialize": "",
        "finalize": "",
        "libs": [],
        "x": 410,
        "y": 760,
        "wires": [
            [
                "d7b0f308db912817"
            ]
        ]
    },
    {
        "id": "35f35737.b4f2c8",
        "type": "comment",
        "z": "44d7a4fb.e41a5c",
        "name": "Living Dinner Table Shelly 2024",
        "info": "",
        "x": 250,
        "y": 560,
        "wires": []
    },
    {
        "id": "b080c84e.2c3968",
        "type": "comment",
        "z": "44d7a4fb.e41a5c",
        "name": "butt1 on / (butt2 off)",
        "info": "",
        "x": 510,
        "y": 560,
        "wires": []
    },
    {
        "id": "ac892b87.1c7358",
        "type": "comment",
        "z": "44d7a4fb.e41a5c",
        "name": "butt3 toggle",
        "info": "",
        "x": 390,
        "y": 720,
        "wires": []
    },
    {
        "id": "b5bdbd65.c4e1c",
        "type": "comment",
        "z": "44d7a4fb.e41a5c",
        "name": "butt 2 step dimmer",
        "info": "",
        "x": 410,
        "y": 640,
        "wires": []
    },
    {
        "id": "d7b0f308db912817",
        "type": "mqtt out",
        "z": "44d7a4fb.e41a5c",
        "name": "",
        "topic": "shellies/shellydimmer-D0DF15/light/0/set",
        "qos": "",
        "retain": "",
        "respTopic": "",
        "contentType": "",
        "userProps": "",
        "correl": "",
        "expiry": "",
        "broker": "8c74c5f6.9a7a48",
        "x": 860,
        "y": 600,
        "wires": []
    },
    {
        "id": "8c74c5f6.9a7a48",
        "type": "mqtt-broker",
        "name": "MQTTSERVER",
        "broker": "MQTTSERVER",
        "port": "1883",
        "clientid": "",
        "usetls": false,
        "compatmode": true,
        "keepalive": "15",
        "cleansession": true,
        "birthTopic": "",
        "birthQos": "0",
        "birthPayload": "",
        "closeTopic": "",
        "closePayload": "",
        "willTopic": "",
        "willQos": "0",
        "willPayload": ""
    }
]

Vector graphics on my demo arduino nano.

Adding a rotary encoder to Home Assistant to control dimmers using EspHome

Config for mqtt-433 and home assistant entities.
Maybe I’ll add a display to select which dimmer to change.

ESPHome Config for direct communication to a MQTT enabled 443mhz dimmer.

When using GND to the rotary you have to use a pullup entry in your yaml

esphome:
  name: rotarywhite
  friendly_name: RotaryWhite

esp8266:
  board: esp01_1m

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx="

ota:
  password: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Rotarywhite Fallback Hotspot"
    password: "xxxxxxxxxxxxxxxxxxx"

captive_portal:
    
sensor:
  - platform: rotary_encoder
    name: "WhiteRotaryEncoder"
    id: rotvalue
    min_value: 0
    max_value: 50
    resolution: 1
    pin_a:
      number: GPIO0
      inverted: true
      mode:
        input: true
        pullup: true
    pin_b:
      number: GPIO2
      inverted: true
      mode:
        input: true
        pullup: true
    on_value:    
      - mqtt.publish:
          topic: "ha433/Living5Spots/brightcontrol"
          payload: !lambda |-
              return to_string(id(rotvalue).state);
mqtt:
  discovery: false
  broker: 192.168.1.1
  port: 1883
  discovery_prefix: homeassistant

Config part to change Home Assistant entities.
WARNING YOU HAVE TO CHANGE RIGHTS!

Settings > Addons > EspHome > Configuration
(press configure to change service calls)

sensor:
  - platform: rotary_encoder
    name: "WhiteRotaryEncoder"
    id: rotvalue
    min_value: 0
    max_value: 50
    resolution: 1
    pin_a:
      number: GPIO0
      inverted: true
      mode:
        input: true
        pullup: true
    pin_b:
      number: GPIO2
      inverted: true
      mode:
        input: true
        pullup: true
    on_value:    
      - homeassistant.service:
          service: light.turn_on
          data_template:
                entity_id: light.bedroomdimmer  
                brightness: "{{ brightness_1 | int }}"    
          variables:
              brightness_1: !lambda 'return id(rotvalue).state * 4;'