Tag Archives: python

Minimal socket test server, client and arduino

Socket connect to server, enter number and get reply test.

server.py

import socket
import threading

# Define the host and port
HOST = '0.0.0.0'  # Localhost (change as needed)
PORT = 65432        # Port to listen on (non-privileged ports are > 1023)

# Function to handle each client connection
def handle_client(conn, addr):
    print(f"Connected by {addr}")
    
    # Send a thank you message to the client upon connection
    thank_you_message = "Thank you for connecting! Please enter a number:\n"
    conn.sendall(thank_you_message.encode('utf-8'))
    
    while True:
        try:
            data = conn.recv(1024)
            if not data:
                break
            
            # Decode the received data
            received_number = data.decode('utf-8').strip()
            print(f"Received from {addr}: {received_number}")
            
            # Try to convert the received data to an integer
            try:
                number = int(received_number)
                response = f"The double of {number} is {number * 2}\n"
            except ValueError:
                response = "Please enter a valid number.\n"
            
            # Send the response back to the client
            conn.sendall(response.encode('utf-8'))
        except ConnectionResetError:
            print(f"Connection with {addr} lost.")
            break

    conn.close()
    print(f"Connection with {addr} closed.")

# Function to start the server and listen for connections
def start_server():
    # Create a socket object
    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    
    # Bind the socket to the host and port
    server.bind((HOST, PORT))
    
    # Start listening with a maximum backlog of 5 connections
    server.listen(5)
    print(f"Server listening on {HOST}:{PORT}")
    
    while True:
        # Accept a new connection
        conn, addr = server.accept()
        
        # Create a new thread to handle the client connection
        client_thread = threading.Thread(target=handle_client, args=(conn, addr))
        client_thread.start()

# Run the server
if __name__ == "__main__":
    start_server()

python-client.py

import socket

# Define the server host and port
HOST = 'IPNUMBERSERVER'  # The server's hostname or IP address
PORT = 65432        # The port used by the server

def start_client():
    # Create a socket object
    client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    
    # Connect to the server
    client.connect((HOST, PORT))
    
    # Receive and print the welcome message from the server
    welcome_message = client.recv(1024).decode('utf-8')
    print(welcome_message)
    
    while True:
        # Enter a number and send it to the server
        number = input("Enter a number (or type 'exit' to quit): ")
        
        if number.lower() == 'exit':
            print("Closing connection...")
            break
        
        client.sendall(number.encode('utf-8'))
        
        # Receive the response from the server and print it
        response = client.recv(1024).decode('utf-8')
        print(response)
    
    # Close the connection after the loop ends
    client.close()

# Run the client
if __name__ == "__main__":
    start_client()

arduino-client.ino

#include <ESP8266WiFi.h> // For ESP8266
//#include <WiFi.h>       // For ESP32

// Replace with your network credentials
const char* ssid     = "your_SSID";     // Replace with your network SSID (name)
const char* password = "your_PASSWORD"; // Replace with your network password

// Define the server's IP address and port
const char* host = "192.168.1.100"; // Replace with your server's IP address
const int port = 65432;             // Server port

WiFiClient client;

void setup() {
  Serial.begin(115200);
  delay(10);

  // Connect to WiFi
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(1000);
    Serial.print(".");
  }

  Serial.println();
  Serial.println("WiFi connected.");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());

  // Connect to the server
  Serial.print("Connecting to server at ");
  Serial.print(host);
  Serial.print(":");
  Serial.println(port);

  if (client.connect(host, port)) {
    Serial.println("Connected to server!");
    
    // Wait for the welcome message from the server
    while (client.available() == 0);

    // Read and print the welcome message
    while (client.available()) {
      char c = client.read();
      Serial.print(c);
    }
  } else {
    Serial.println("Connection failed.");
  }
}
void loop() {
  // Check if connected to the server
  if (client.connected()) {
    // Check if there is any serial input from the user
    if (Serial.available() > 0) {
      String input = Serial.readStringUntil('\n');
      input.trim(); 

      if (input.equalsIgnoreCase("exit")) {
        Serial.println("Closing connection...");
        client.stop(); // Disconnect from the server
        while (true);  // Stop the loop
      }

      // Send the number to the server
      client.println(input);

      // Wait for the server's response
      while (client.available() == 0);

      // Read and print the server's response
      while (client.available()) {
        char c = client.read();
        Serial.print(c);
      }
    }
  } else {
    Serial.println("Disconnected from server.");
    while (true); // Stop the loop
  }
}

Bornhack 2023 NFC Badge Display hack

Last week I bought an old Bornhack Badge. I thought it needed a display.

Using a SSD1306 display, and Circuitpython I made this.

( Wooded thingy contains an RFID chip ( Part of my player ))

Library and files needed:

  • font5x8.bin in root of filesystem ( just google for this file )
  • copy of adafruit_framebuf.mpy in /lib
  • copy of adafruit_ssd1306.mpy in /lib

Code: (midway some pixel examples, just uncomment)

import board
from time import sleep
import busio 
from PN7150 import PN7150
import adafruit_ssd1306
import math
import adafruit_framebuf


if True:
    # Fast 400KHz I2C
    i2c = busio.I2C(board.SCL, board.SDA, frequency = 400000)
else:
    # Regular 100kHz I2C
    i2c = board.I2C()


WIDTH = 32
HEIGHT = 8

buffer = bytearray(round(WIDTH * math.ceil(HEIGHT / 8)))
fb = adafruit_framebuf.FrameBuffer(
    buffer, WIDTH, HEIGHT, buf_format=adafruit_framebuf.MVLSB
)


nfc = PN7150(i2c, board.IRQ, board.VEN)

display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c,addr=0x3c)

assert nfc.connect()
print("Connected.")

assert nfc.modeRW()
print("Switched to read/write mode.")

display.fill(0)

display.show()

#display.fill(0)
#display.text('Hello', 0, 0, 1 )
#display.text('World', 0, 10, 1)
#display.show()
# Set a pixel in the origin 0,0 position.
#display.pixel(0, 0, 1)
# Set a pixel in the middle 64, 16 position.
#display.pixel(64, 16, 1)
# Set a pixel in the opposite 127, 31 position.
#display.pixel(127, 31, 1)
#display.show()

while True:
    display.fill(0)
    display.text('Waiting for card', 0, 0, 1 )
    display.show()

    assert nfc.startDiscoveryRW()

    print("Waiting for card..")
    card = nfc.waitForCard()
    assert nfc.stopDiscovery()

    print("ID: {}".format(card.nfcid1()))
    id = card.nfcid1()
    display.text(id, 0, 10, 1 )
    display.show()

    sleep(0.5)

Not sure about display i2c address? Use below code

import time
import board
import busio

# List of potential I2C busses
ALL_I2C = ("board.I2C()",)

# Determine which busses are valid
found_i2c = []
for name in ALL_I2C:
    try:
        print("Checking {}...".format(name), end="")
        bus = eval(name)
        bus.unlock()
        found_i2c.append((name, bus))
        print("ADDED.")
    except Exception as e:
        print("SKIPPED:", e)

# Scan valid busses
if len(found_i2c):
    print("-" * 40)
    print("I2C SCAN")
    print("-" * 40)
    while True:
        for bus_info in found_i2c:
            name = bus_info[0]
            bus = bus_info[1]

            while not bus.try_lock():
                pass

            print(
                name,
                "addresses found:",
                [hex(device_address) for device_address in bus.scan()],
            )

            bus.unlock()

        time.sleep(2)
else:
    print("No valid I2C bus found.")

Keyboard switch part 1

Testing the first keyboard. It is the 8085-SDK hex matrix keyboard.

It is running on a Raspberry Pi Zero 2, without X server.
So the images are displayed using the framebuffer.
Also the touch data is read using evdev and the raw devices.

Todo:

  • HID part
  • Add a rotary button for the selection of the different Keyboard Layouts
  • Improvement keyboard matrix calculation to find out which key is being pressed.
  • Code to control AT/PS2 computers directly using GPIO pins
  • Add a controller to use Raw controlling of matrix pins ( 6502 C64 hardware for example )

Bash test and configuring the OS for testing.

cat <<EOF >> /boot/config.txt
hdmi_group=2
hdmi_mode=87
hdmi_timings=400 0 100 10 140 1280 10 20 20 2 0 0 0 60 0 43000000 3
display_rotate=3
EOF

# Image testing
apt-get install fbi
sudo fbi -d /dev/fb0 -T 1 8085.png  -a --noverbose

apt-get install python3-evdev python3-uinput evtest
evtest

First simple python test

import select
from math import floor
import sys
slot = 0

keysname=[["F","E","D","C","vect-int","reset"],
          ["B","A","9","8","GO","Single-Step"],
          ["7","6","5","4","Exam-reg","Subst-mem"],
          ["3","2","1","0","Exec","Next"],
          ]
keysnames=[["F","E","D","C","vect-int","reset"],
          ["B","A","L","H","GO","Single-Step"],
          ["PCL","PCH","SPL","SPH","Exam-reg","Subst-mem"],
          ["3","2","1","0",".",","],
          ]

for path in evdev.list_devices():
    device = evdev.InputDevice(path)
    if evdev.ecodes.EV_ABS in device.capabilities():
        break
else:
    sys.stderr.write('Failed to find the touchscreen.\n')
    sys.exit(1)

while True:
    r, w, x = select.select([device.fd], [], [])

    id_ = -1
    x = y = 0

    for event in device.read():

        if event.code == event.value == 0:
           if id_ != -1:
                yy = floor(( x - 600 ) / 700)
                xx = floor(( y - 1377 ) / 226)
                if yy < 4 and yy >=0 and xx < 6 and xx >= 00:
                     if slot == 1:
                         print(keysnames[yy][xx])
                     else:
                         print(keysname[yy][xx])

        elif event.code == ABS_MT_TRACKING_ID:
            id_ = event.value
        elif event.code == ABS_MT_SLOT:
            slot = event.value
        elif event.code == ABS_MT_POSITION_X:
            x = event.value
        elif event.code == ABS_MT_POSITION_Y:
            y = event.value

I came up with a simple matrix calculation

Pressing the 4 corner keys gave me x and y.
I took averages for min and max reading.
I don’t need pixel-perfect reading, and I noticed values between 960 and 3080 vertically.
We want 960 – 3080 into 4 blocks, but the middle should start @ 960.

So 3080/3 = about 700
700 / 2 = 350
block 1 starts 350 sooner than 960 is ~ 600
Upper key y coords = 600-> + 700
Next is 1300 -> + 700
converting to whole numbers using floor gives me:
floor(( y – 600 ) / 700)
NOTE: My x and y are rotated

Example using coordinates
1600, 1600
floor(( 1600 – 600 ) / 700) = floor(1,4…) = 1st row
(from row 0,1,2,3)

64×64 Etch a Sketch

In the past I made a Etch a Sketch with my lasercutter.

Using two rotary encoders and the 64×64 matrix display I recently bought, I made a drawing thingy.
Like a Etch a Sketch.

Some Circuit Python code.
Now I have to fix an out of memory issue using below.
And make a colour selection button??? 🙂

import time
import board
import displayio
import math
import vectorio
import rgbmatrix
import framebufferio
import array
import bitmaptools

import rotaryio
import board

encoder1 = rotaryio.IncrementalEncoder(board.GP27, board.GP26)
encoder2 = rotaryio.IncrementalEncoder(board.GP18, board.GP19)

last_position1 = 0
last_position2 = 0

# Release any existing displays
displayio.release_displays()

# --- Matrix Properties ---
DISPLAY_WIDTH = 64
DISPLAY_HEIGHT = 64

# --- Matrix setup ---
BIT_DEPTH = 2
matrix = rgbmatrix.RGBMatrix(
    width=64, bit_depth=2, height=64,
    rgb_pins=[board.GP0, board.GP1, board.GP2, board.GP3, board.GP4, board.GP5],
    addr_pins=[board.GP6, board.GP7, board.GP8, board.GP9, board.GP22],
    clock_pin=board.GP10, latch_pin=board.GP12, output_enable_pin=board.GP13)
colrs = 13
display = framebufferio.FramebufferDisplay(matrix, auto_refresh=True)
b1 = displayio.Bitmap(display.width, display.height, colrs )
palette = displayio.Palette(colrs )
palette[0] = 0x000000  # black
palette[1] = 0x964B00  # brown (light yellow) 
palette[2] = 0x00FFFF  # cyan
palette[3] = 0x850101  # deep red 
palette[4] = 0x7F00FF  # violet
palette[5] = 0xC46210  # orange
palette[6] = 0x3D9140  # Cobalt green  
palette[7] = 0x004225  # british racing green 
palette[8] = 0x8B008B  # dark magenta 
palette[9] = 0x1F75FE  # crayola  blue
palette[10] =0x00308F  # air force blue US air force    
palette[11] =0xBF00FF  # electric purple 
palette[12] =0x08E8DE  # turquoise
g1 = displayio.Group(scale=1)
display.root_group = g1 

bmp = displayio.Bitmap(64,64, 2)

tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
g1.append(tilegrid)
display.auto_refresh = True

tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
while True:
        position1 = encoder1.position
        if last_position1 is None or position1 != last_position1:

            if position1 > last_position1:
                position1 = position1 + 1
            if position1 < last_position1:
                position1 = position1 - 1
            if position1 < 0:
                position1 = 0
            last_position1 = position1
        position2 = encoder2.position
        if last_position2 is None or position2 != last_position2:
            if position2 > last_position2:
                position2 = position2 + 1
            if position2 > last_position2:
                position2 = position2 - 1
            if position2 < 0:
                position2 = 0
            last_position2 = position2

        bmp[position1,position2]=1
        tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
        g1.append(tilegrid)
        display.auto_refresh = True

I tried to recreate an optical illusion

My friend Tyrone posted something he recorded from TV.
It was an illusion, using rotated images.

The effect is that it seems that the card is rotating at different speeds, when pressing the s (show/unshow) key, you see the card rotating at the same speed as before.

So I wanted to try to recreate this using python.
The effect is there, but a little less.
What can I improve?

Mine:

Around the 30 seconds mark I disable the background, you’ll see the card rotating as before.

Original:

Better version, larger and using s key to toggle water off, to see the card rotating

import pygame
import math

# 20240409 added s to toggle 

pygame.init()
screen = pygame.display.set_mode((1600, 900))
clock = pygame.time.Clock()

def blitRotate(surf, image, pos, originPos, angle):

    image_rect = image.get_rect(topleft = (pos[0] - originPos[0], pos[1]-originPos[1]))
    offset_center_to_pivot = pygame.math.Vector2(pos) - image_rect.center
    rotated_offset = offset_center_to_pivot.rotate(-angle)
    rotated_image_center = (pos[0] - rotated_offset.x, pos[1] - rotated_offset.y)
    rotated_image = pygame.transform.rotate(image, angle)
    rotated_image_rect = rotated_image.get_rect(center = rotated_image_center)
    surf.blit(rotated_image, rotated_image_rect)

try:
    image = pygame.image.load('cards.png').convert_alpha()
    image2 = pygame.image.load('clear+sea+water-2048x2048.png').convert_alpha()
except:
    text = pygame.font.SysFont('Times New Roman', 50).render('imagemissing', False, (255, 255, 0))
    image = pygame.Surface((text.get_width()+1, text.get_height()+1))
    image2 = image
    image.blit(text, (1, 1))

w, h = image.get_size()
angle = 0
angle2 = 0
done = False
while not done:
    clock.tick(60)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            done = True

    pos = (screen.get_width()/2, screen.get_height()/2)
    
    screen.fill(0)
    keys = pygame.key.get_pressed()
    if (not keys[pygame.K_s]):
        blitRotate(screen, image2, pos, (900, 900), angle2)
    blitRotate(screen, image, pos, (w/2, h/2), angle)
    angle += 1
    angle2 += math.sin(math.radians(angle))
    pygame.display.flip()
    
pygame.quit()
exit()

What to do when waiting for your ribs on the smoker. (Programming some python)

This time I used a rub with the following ingredients:
Seasalt, garlic, brown sugar, mustard seeds, paprica, cilantroseeds, black pepper, red pepper, oregano, thyme and cumin.

Doing a simple 3-2-1 smoke session, so .. what to do in dose 6 hours?

Lets make something using a Sense hat and Python.
Same HAT I used for my xmas ornament thingy in our tree.

  • Generate a large maze (80×80 for now)
  • Paint the maze using colors on the SenseHat
  • Read joystick movement and scroll the maze accordingly, keeping the player in the middle

Now I have to paint my ribs with BBQ sauce, and leave it in the smoker for yet another hour. (Nice glazing)

Next steps for the maze:

Use a better way to generate (reverse backtracking as I made for my other maze thing)

Wall collision detection is nearly completed.

Better placement “birth” of player in the maze.

# # # # # # # # # # # # # # # # # # # # 

# R D . . . . . R D . . . . R R D R D # 

# D L . . . . . U D . . . . U . R U D # 

# D . . . . R R U R D . . R U U L . D # 

# R D . . . U . . . R R D U . . U L D # 

# . R D R R U . . . . . D U . . . U L # 

# . . D U L . . . . . D L U . . . . . # 

# . . R R U . . . . . R R U . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# . . . . . . . . . . . . . . . . . . # 

# # # # # # # # # # # # # # # # # # # # 

Big media button V2

Back in 2019 I made a volume/mute button using an ATtiny85.
(Digispark/trinkey thingy)

Same device as my password paster

It’s USB connection is perfect for this password paste thingy, but not for a big button like this. (even with a ugly usb extending cable)

2019 Version using digispark ATtiny85

Button is 3D printed (found on yeggi)

For my big battlestation i’m using:

The old way of flashing using Arduino IDE (for digispark)

Install Boards using : preferences, add board URL
http://digistump.com/package_digistump_index.json

Note: There being no regular USB device, you need to add some udev rules.
cat /etc/udev/rules.d/digispark.rules
SUBSYSTEM==”usb”, ATTR{idVendor}==”16d0″, ATTR{idProduct}==”0753″, MODE=”0660″, GROUP=”dialout”

When compiling and uploading the program, you get a message to plug in the device. See below screenshot.

Now the 2024 change.
Reason to change:

  • Want to have USB-C
  • Python to get a more flexible setup
  • I want to use more pins, so I can add LEDs and more buttons.
  • I wanted to play with my Waveshare RP2040 Zero.

This is the first setup, with same functionality as before.

Now I can add more stuff!

Putting the code on the RP2040-zero

Press boot button and insert into your pc.
Download uf2 file from here and save in RP2 drive.
https://circuitpython.org/board/waveshare_rp2040_zero/
Open Thonny, and configure interpreter to:

Download the zip file from https://github.com/adafruit/Adafruit_CircuitPython_HID
And copy only the subdirectory adafruit_hid to the drive in subdir lib

Open the file code.py from the device, and remove example hello world code.
Paste in the following code.

import rotaryio
import board
import time

import board
import digitalio
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

but = digitalio.DigitalInOut(board.GP4)
but.direction = digitalio.Direction.INPUT
but.pull = digitalio.Pull.UP

cc = ConsumerControl( usb_hid.devices )

encoder = rotaryio.IncrementalEncoder(board.GP5, board.GP6)
last_position = 0
while True:
    position = encoder.position
    if int(last_position) < int(position):
        #print(position)
        command = ConsumerControlCode.VOLUME_DECREMENT
        cc.send(command)
    #last_position = position
    if int(last_position) > int(position):
        #print(position)
        command = ConsumerControlCode.VOLUME_INCREMENT
        cc.send(command)
    last_position = position
    if not but.value:
        command = ConsumerControlCode.MUTE
        cc.send(command)
        time.sleep(0.5)

Above code is the bare minimum, I’ll add more functionality soon.
(LEDs and more buttons)
Next and Previous Track and mode change.
From Audio to Navigation for example.

Micropython Pico W Internal Led Test

  • Download firmware from here (uf2 file)
    https://micropython.org/download/RPI_PICO_W/
    (Make sure you use W version if you have a pico-w)
  • Press bootsel and plug your pico into an usb port.
  • A folder should be accessible
  • cp RPI_PICO_W-20231005-v1.21.0.uf2 /media/$USER/RPI-RP2/
    (pico reboots and installs firmware)

Install and start Thonny.

Tools > Options > Interpreter

Python test code (1 second blink)
Note: for the normal pico without Wi-Fi, it is GP25 instead of LED.

from machine import Pin
import utime

led_onboard = Pin('LED', Pin.OUT)
while True:
        led_onboard.on()
        utime.sleep(1)
        led_onboard.off()
        utime.sleep(1)

Run at boottime?

File > save as:
Select device and name the python script main.py

80×86 boot demo generic work plus code optimalisation and tricks

Writing tools and effects for my new boot demo.

  • Started a generic sector read/writer
  • Some effects
  • A sin/cos data writer to include into your source
  • Working on a library of functions (sector loaders, color palette, vert/hor retrace functions)
  • Laying out a memory map for the demo

Below the output of the sin/cos generator ( see used in video below )
(It also shows a visual plot of the function)

Source code python script

# importing the required module
import matplotlib.pyplot as plt
import numpy as np
import math

# Change these
numberofdatapoints = 360
maxamp = 180
howmuchfromwave = 0.5
numberofharmonies = 1
# Number of harmonies are sin/cos additions in the calculation line below

# not here
step = 360/numberofdatapoints*howmuchfromwave
offset = maxamp
maxamp = maxamp / numberofharmonies
offset = 0


x = [ ]

for xv in range(numberofdatapoints):
    xvstep=xv * step
# Calculation line
#    datapoint=np.sin(math.radians(xvstep))
# Double harmony example
    datapoint=np.sin(math.radians(xvstep)) + (np.sin(math.radians(xvstep*3))/2)

    datapoint=datapoint * maxamp
    datapoint=datapoint + offset
    x.append(int(datapoint))

print("    db ", end="")
print(*x, sep = ",") 
  
# plotting the points 
plt.plot(x)
  
# naming the x axis
plt.xlabel('x - axis')
# naming the y axis
plt.ylabel('y - axis')
  
# giving a title to my graph
plt.title('Example')
  
# function to show the plot
plt.show()

Minimalistic very fast boot loader flash screen effect

Graffiti bouncher test (probably ends up bounching a 320×400 image)
This one uses the generated sintab (Using the python script above)

Test code for a text scroller

Code optimalisation/tricks

clear a (double) register?
xor ax,ax
is faster than
mov ax,0h

Want to make ds pointer same as cs?
Instead of
mov ax,cs
mov ds,ax
use
push cs
pop ds

self modifying code
mostly we just move data around, but you also can change the runtime code (instructions)

  • a – increment ax on line 103h
  • b – another part of the code/maybe in a interrupt
    10Fh load al with 48h (thats the opcode for decrement (see c)
    111h place the opcode in address 103h, which had 40h ..
    Now we changed the code to decrement next time

Speedcode/unrolled code

Populair on the C64 where resources are even more limited, you could use speedcode.
Most of the speedcode you generate, due to its repeating lines.
When looking at clock cycles you can save some extra cycles, by using a little more memory but saving on “expensive” loops.

Simple example

Left a funtion with a loop, right is the same but all instuctions sequencial

Left 15 bytes but 284 cycles

Right 39 bytes but only 102 cycles!

4
4
; below part 9 times
9
3
4
16 or 4
= 284 cycles

Speedcode
4
2 ; xor is faster
9
3 ; even 2 when you can use BX pair!
9
3
9
3
9
3
9
3
9
3
9
3
9
3
9
= 111 cycles (or 102 BX pair)

Moving memory blocks (No DMA)

;DS:(E)SI to address ES:(E)DI
    push cs          ; example to set es to code segment
    pop es
    mov si,1000      ; offset pointer source
    xor di,di        ; destination offset
    mov cx,320*100   ; number of transfers (See below words)
    mov ax,0a000h    ; Destination
    mov es,ax        ; destination segment 
    cld              ; Clear direction flag set SI and DI to auto-increment
    rep movsw        ; repeat mov words! until number of transfers is 0
;  

Short binary > bcd > dec (ascii) convert for numbers (0-99)

mov ax,01ch ; = 28 
mov bx,0ah ; = 10
div bl ; divide BL by AX
       ; AX = 0802 ; Remainder/Divider
xchg ah,al ; change around (dont use if you want to keep little endian)
add ax,3030h ; offset to ascii 30=0 31=1
             ; ax ends up with 3238 .. 28 

Busy day: PHP, Python, RP2040 and Frequency detection.

While watching a online python course, I was writing the code for a music guessing game (Highland Bagpipe Tunes)
The core is working, now it’s a matter of filling this “pruts” with tunes.

Switching between python, php, bash and C is a nightmare 🙂

A screenshot of work in progress

Then the postman came .. with goodies.
I needed the MAX9814 analog microphone with amplifier, all of my other sensors were not up to the task.

So I switched to this WIP with the MAX9814.
I want to make a little gadget using an Arduino and 9 leds, which uses FFT to blink which note I am playing on my Highland Pipes.

So detecting is working, now I have to attach a bunch of leds.

First test using Arduino Cloud (I still prefer PlatformIO) But this is better than the old IDE. (Note, you have to install an agent to connect your browser to a board)

Next thing I did today:
Getting my waveshare RP-2040 Zero working with micropython.

Great the little NeoPixel Led on the board.

Steps to get this working:

  • Install Thonny
  • Connect the rp2040 via USB with the boot button pressed
  • place RPI_pico.xxxx.uf2 on the mounted usb disk, it will reboot
  • Run Thonny connect and run a test program

Want to run program @boot ?
save -> to device, and call main.py