Category Archives: Computer

Raster line with open borders to draw a flag

A fun experiment using opening the C64 border and changing colors on certain rasterlines.

Screenshot (only a little artefact on the lefthand side)

Code (acme)

acme borderflag.asm
x64 +drive8truedrive borderflag.prg

!cpu 650rasterline
!to "borderflag.prg",cbm


* = $0801
    !byte $0d,$08,$dc,$07,$9e,$20,$34
    !byte $39,$31,$35,$32,$00,$00,$00

* = $c000
        sei                     ; turn off interrupts

        ldx #1                  ; enable raster interrupts
        stx $d01a

        lda #<irq       	; set raster interrupt vector
        ldx #>irq
        sta $0314
        stx $0315

        ldy #$f0                ; set first interrupt rasterline
        sty $d012
        lda $d011               ; reset rasterline hi bit
        and #%01111111
        sta $d011

        asl $d019               ; ack VIC interrupts
        cli

loop_until_doomsday
        jmp loop_until_doomsday

irq
	asl $d019       	; ack irq

	lda #$01		; set screenframe and background
	sta $d020
	lda #$02
	sta $d021

	lda #$38        	; wait for line $38
	cmp $d012       	
	bne *-3

	lda #$02		; set screenframe and background
	sta $d020
	lda #$01
	sta $d021

	lda #$f9        	; wait for line $f9C
	cmp $d012       	; just below border in 25 row mode
	bne *-3

	lda $d011       	; switch to 24 row mode ($d011 bit 3 = 0)
	and #$f7        	; %11110111
	sta $d011

	lda #$fd        	; wait for line $fd
	cmp $d012       	; just below border in 25 row mode
	bne *-3

	lda $d011       	; switch back to 25 row mode ($d011 bit 3 = 1)
	ora #$08        	; %00001000
	sta $d011

	jmp $ea31		; exit irq

No more protected sheets

I needed to get some data from protected sheets.

But I got this on 100+ files:

F that:

Made a script to remove sheet protection and ran this in a loop over all files.
Bye bye protection.

 ./script.sh /mnt/fileserver/sensordata001.xlsx
Parsing /mnt/fileserver/sensordata001.xlsx
Archive:  this.zip
  inflating: tmp/[Content_Types].xml
  inflating: tmp/_rels/.rels
  inflating: tmp/xl/_rels/workbook.xml.rels
  inflating: tmp/xl/workbook.xml
  inflating: tmp/xl/worksheets/sheet4.xml
  inflating: tmp/xl/worksheets/sheet2.xml
  inflating: tmp/xl/worksheets/sheet3.xml
  inflating: tmp/xl/worksheets/sheet1.xml
  inflating: tmp/xl/styles.xml
  inflating: tmp/xl/theme/theme1.xml
  inflating: tmp/xl/sharedStrings.xml
  inflating: tmp/docProps/core.xml
  inflating: tmp/docProps/app.xml
  adding: [Content_Types].xml (deflated 78%)
  adding: docProps/ (stored 0%)
  adding: docProps/core.xml (deflated 49%)
  adding: docProps/app.xml (deflated 54%)
  adding: _rels/ (stored 0%)
  adding: _rels/.rels (deflated 60%)
  adding: xl/ (stored 0%)
  adding: xl/worksheets/ (stored 0%)
  adding: xl/worksheets/sheet2.xml (deflated 92%)
  adding: xl/worksheets/sheet1.xml (deflated 46%)
  adding: xl/worksheets/sheet4.xml (deflated 92%)
  adding: xl/worksheets/sheet3.xml (deflated 92%)
  adding: xl/_rels/ (stored 0%)
  adding: xl/_rels/workbook.xml.rels (deflated 77%)
  adding: xl/workbook.xml (deflated 56%)
  adding: xl/theme/ (stored 0%)
  adding: xl/theme/theme1.xml (deflated 78%)
  adding: xl/styles.xml (deflated 57%)
  adding: xl/sharedStrings.xml (deflated 23%)

Bash script:
It leaves the original intact, but makes a unprotected copy named the same with unprot_ in front of it.

#!/bin/bash
if [ -n "$1" ]; then
  echo "Parsing $1"
else
  echo "usage : scriptname /path/to/sheet.xlsx"
  exit 0
fi
name=$(basename $1)
dir=$(dirname $1)
rm -f this.zip
rm -rf tmp
mkdir tmp
cp "$1" this.zip
unzip this.zip -d tmp
find tmp/xl/worksheets/ -iname *xml -exec sed -i -e "s/<sheetProtection.*\/>//g" {} \;
cd tmp
rm -f "$dir/unprot_${name}"
zip -r "$dir/unprot_${name}" *
cd ..

Amiga and DIY 68000 single board computer.

Started working on my breadboard version of a 68k computer.
When it’s working, I’ll make a PCB version.
Using almost only parts I still have. (No 8mhz crystal)

The 68000 being 24 bit address and 16 bit data needs 2x 8-bit roms and 2x 8 bit ram, but i didn’t have the components yet in this picture.

While tinkering with above, my Fatter Agnus chip came in.

To make a 1mb chipmem version of your rev 5 amiga (PAL)

You need to have a newer version of the Agnus chip (I had 8371, and bought a 8372a) AND you need a 512kb trapdoor memory expansion.

An unmodded rev 5 will see 512kb Chip mem and 512 Fast mem.

Replacing the Agnus 8371 for 8372a:
I lost my PLCC puller, so I modded a paperclip into a puller 🙂

When placing the new chip, I had to tape pin 41 for PAL version.
I used Polyimide Film tape.

Next I had to cut the jumper 2 connection and solder the other pads.
(Bottom and middle disconnect and middle and top bridged)

Next was another cut on the PCB, this disables the trapdoor card detection.

Success!

Notes for next projects I made using our short holiday in Madeira.

I think we’ve seen Maderia .. 🙂

I bought a little notebook while being there.
I wrote about 12 pages of ideas, schematics and projects to start.

  1. Rewrite Wozmon to use my composite pcb (Atmega328)
    access though via
  2. Building a 68000 pcb with a minimal machine code monitor.
    Using a atf22v10 as address decoder.
    (Same as my 6502 , I love those devices)
    Maybe I’ll add a micro sdcard reader
  3. Add a lcd matrix display to my 8088/8086
  4. Creating a PLA alternative for C64 using ath22v10 (again)
  5. Make backplanes for my 6502, so I can plug cards with different POC cards.
    Clockcard, Latched bus leds, multiple VIA’s, IRQ controller, SID + Buzzer (Maybe also AY-3-8910, see other posts), LCD, composite, serial, Matrix and serial_usb) keyboard)
  6. IRQ controller because I have some devices without opendrain, so I can’t tie all IRQ’s together
  7. Amiga Chip Mem mod for rev 5 (using a ‘new’ 8372A)
  8. 8085 Cartridge new approach
  9. C64Pico fix and add backplane + breadboard version for POCs
  10. … more
First version PLA with atf22v10
PCB mockup (two ATF22v10 on top and a wide pin setup for placement in C64
Wide PLA

8085 Cartridge revisited

Working on 8085 cartridge

Problem with cartridge: prg is 17k, exomized 10k.
So you need 2 banks of 8k.
This disables basic rom, needed for the program.
The program needs to be relocated to 0x800 anyway.
So my exomizer options will take care of that.
But the basic is not being enabled again.

exomizer sfx sys -o data.exo -Di_ram_enter=\$37 -Di_ram_during=\$34 -f'LDA #$37 STA $01' 8085.prg 
xa frame.asm -o frame.bin
x64 -cart16 frame.bin 

Result … JAM

68000 Build environment

For my new SBC I’ll need a machine code build environment.

This is what I’ve setup now.

My main workstation is Linux based. While this setup is Linux based, vasm should work on other operating systems also.

Getting and compiling vasm for 68k

wget http://sun.hasenbraten.de/vasm/release/vasm.tar.gz
tar xzvf vasm.tar.gz
cd vasm
# Building
make CPU=m68k SYNTAX=oldstyle
# Using
./vasmm68k_oldstyle -m68000 -Fbin -dotdir -no-opt source.asm
# this generates a.out

# Dumping the file (byte separated and with a offset of 0x8000)
xxd -g 1 -o 0x8000 a.out | head
00008000: 30 3c aa aa 4e f9 00 00 80 04 00 00 00 00 00 00  0<..N...........
00008010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

# But my 68k needs an ODD EVEN eeprom 
# so I used another tool - romsplit
git clone https://github.com/ullman/romsplit
cd romsplit
make all
# Using romsplit
./romsplit -s a.out odd.rom even.rom
# Split into 4? Split the splits using above
# Output
xxd -g 1 -o 0x8000 odd | head -1 ; xxd -g 1 -o 0x8000 even | head -1
00008000: 30 aa 4e 00 80 00 00 00 00 00 00 00 00 00 00 00  0.N.............
00008000: 3c aa f9 00 04 00 00 00 00 00 00 00 00 00 00 00  <...............
# Burn these with minipro

Disassemble

m68k-linux-gnu-objdump --disassemble-all --target=binary --architecture=m68k a.out

68030 example for friend

# Compile vasm with
make CPU=m68k SYNTAX=mot
------------
vasmm68k_mot  -Fbin  ./edk.asm
-------------
.68030

	ORG $0

*****
* exception table (256 x 4 bytes)
*****
	dc.l $400	; Program Counter na reset (startadres)
	dc.l $20000	; stackpointer (ram locatie)
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0

	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

	org $400	; hier starten
	move.l #$0,d0
loop1:
	add.l #$1,d0
	cmp.l #$10000,d0
	bne loop1

	move.l #$0,d0
loop2:
	add.l #$1,d0
	cmp.l #$10000,d0
	bne loop2

	nop
	nop
	nop
-----
vasm 1.9f (c) in 2002-2023 Volker Barthelmann
vasm M68k/CPU32/ColdFire cpu backend 2.6c (c) 2002-2023 Frank Wille
vasm motorola syntax module 3.18 (c) 2002-2023 Frank Wille
vasm binary output module 2.3a (c) 2002-2023 Volker Barthelmann and Frank Wille

org0001:0(acrwx1):	           0 bytes
org0002:0(acrwx1):	        1024 bytes
org0003:400(acrwx2):	          30 bytes
-----
-rw-rw-r--  1 henri    henri       1054 aug 27 11:45  a.out

Playing an old game

While I’m not really a gamer, I played a very old game I loved playing on my Amiga.

Its Ports of Call.

Are there others like this game?

Ports of Call is a 1986 business simulation game developed by German duo Rolf-Dieter Klein and Martin Ulrich, and published by Aegis Interactive Entertainment.
The game simulates the management of a global freight transport company, where the player charters freight, and, using the accumulated profit, can buy more and better ships. Minigames include manually piloting your ship into a specified berth in the harbour and picking up survivors from a life-raft. 

I loved the manoeuvring part, especially the large ships with both front and back rudders.

Here are some screenshots from Amiga Forever emulator

Post about other old games:

Multiple computer systems in a carrying case.

Test picture of a multiprocessor computer setup.
Using buttons on the right, I want the possibility to change between systems and keyboard settings.
Also, multiple software/OS slots for SDCards will be on the right.

Mockup using a laptop display (eeepc) a bought display controller and a pi2 with Faux86

The lid containing the keyboard has a handle!

After laser cutting a nice front, it could become a nice road warrior hacking station.

I’m going to replace the wireless keyboard, probably with a touch display and a programmable layout for keyboards.
Something like below

Some layouts:

I’ll probably buy this one from waveshare

Info about Faux86

  • 8086/8088, V20, 80186 and limited 286 instruction set.
  • Configurable CPU speeds from 5Mhz up to 100Mhz.
  • Custom Hardware BIOS’s supported.
  • Supports bootable disk images in .img and .raw file format.
  • CGA / EGA / VGA Colour Video emulation, with most modes supported.
  • PC Speaker, Adlib, Soundblaster and Disney SoundSource.
  • UART Com Ports.
  • Standard PC XT Keyboard.
  • Serial Port 2-Button mouse.

C64 code re-learning stuff

Re-learning the little I knew (I never had a c64 as a kid).
Back to basics, welll machine code I mean.

Programming a little demo using acme.
Split screen bitmap and text mode plus sid music

Running a little demo in retrodebugger (missing the sid music in the recording)

Some useful commands

; Dump prg with offset 0x800 per byte and skip 00 00 lines
xxd -o 0x800 -g1 icecrew.prg | uniq -f10

; Write symbol list
acme -l icecrew.sym icecrew.asm

; png to kla (koala picture)
retropixels icecrew.png -o icecrew.kla

; relocate a sid address
sidreloc -r org.sid new.sid

Below code has some flaws:

Many empty gaps, creating a large file.
Exomizer could fix this, but better memory management should be the better solution.
The Koala file has many 0 bytes, the logo is small but the file is created for a full screen image.

Part of the program see $1000 of start of SID music


!cpu 6502
!to "icecrew1.prg",cbm

; Standard basic sys runner
basic_address   = $0801

; sid addresses
; address moved using 
; sidreloc -r Lameness_Since_1991.sid lame.sid
; addresses found using
;sidplay2 -v lame.sid 
;+------------------------------------------------------+
;|   SIDPLAY - Music Player and C64 SID Chip Emulator   |
;|          Sidplay V2.0.9, Libsidplay V2.1.1           |
;+------------------------------------------------------+
;| Title        : Lameness Since 1991                   |
;| Author       : Peter Siekmann (Devilock)             |
;| Released     : 2017 Oxyron                           |
;+------------------------------------------------------+
;| File format  : PlaySID one-file format (PSID)        |
;| Filename(s)  : lame.sid                              |
;| Condition    : No errors                             |
;| Playlist     : 1/1 (tune 1/1[1])                     |
;| Song Speed   : 50 Hz VBI (PAL)                       |
;| Song Length  : UNKNOWN                               |
;+------------------------------------------------------+
;| Addresses    : DRIVER = $1C00-$1CFF, INIT = $0FFF    |
;|              : LOAD   = $0FFF-$1B25, PLAY = $1003    |
;| SID Details  : Filter = Yes, Model = 8580            |
;| Environment  : Real C64                              |
;+------------------------------------------------------+
;
sid_address     = $0fff
sid_play        = $1003
sid_init        = $0fff
; Character 
char_address    = $3800
screen_mem      = $4400
; Koala address
bitmap_address  = $6000
bitmap_data     = $7f40
bitmap_color    = $8328
bitmap_bgcolor  = $8710
program_address = $c000
color_mem       = $d800

reg_d011	= $D011
; VIC register
;Bit 7 (weight 128) is the most significant bit of the VIC's nine-bit raster register (see address 53266).
;Bit 6 controls extended color mode
;Bit 5 selects either the text screen ("0") or high resolution graphics ("1").
;Bit 4 controls whether the screen area is visible or not.
;Bit 3 selects 25 (when set to "1") or 24 (when set to "0") visible character lines on the text screen.
;Bit 0–2 is used for vertical pixel-by-pixel scrolling of the text or high resolution graphics.

; Rom routine to clear screen ( slow ! )
; Better to do this yourself
clear_screen     = $e544

* = sid_address
    !bin "lame.sid",,$7c+2

; standard charset
* = char_address
    !bin "charset.chr"

; drawn with gimp converted using retropixel
; retropixels icecrew.png -o icecrew.kla
* = bitmap_address
    !bin "icecrew.kla",,$02

; sys 49152
* = basic_address
    !byte $0d,$08,$dc,$07,$9e,$20,$34,$39,$31,$35,$32,$00,$00,$00

* = program_address
    sei
    ; init
    lda #$00
    tax
    tay
    jsr sid_init
    jsr clear_screen
    jsr load_bitmap
    jsr init_text
    ldy #$7f
    sty $dc0d
    sty $dd0d
    lda $dc0d
    lda $dd0d
    lda #$01
    sta $d01a
    lda reg_d011
    and #$7f
    sta reg_d011
; move interrupt vector to bitmap
    lda #<interruptbitmap
    ldx #>interruptbitmap
    sta $314    ; Low Address part IRQ vector
    stx $315    ; High Address part IQR vector
    ldy #$1b
    sty reg_d011
    lda #$7f
    sta $dc0d
    lda #$01
    sta $d01a
; trigger interrupt at rasterline 0
    lda #$00
    sta $d012
    cli
    jmp *

interruptbitmap
    inc $d019
; trigger interrupt at rasterline 128
    lda #$80
    sta $d012
    lda #<interrupttxt
    ldx #>interrupttxt
    sta $314
    stx $315
    jsr bitmap_mode
    jmp $ea81

interrupttxt
; ack IRQ
    inc $d019
; IRQ at line 0
    lda #$00
    sta $d012
    lda #<interruptbitmap
    ldx #>interruptbitmap
    sta $314
    stx $315
    jsr text_mode
    jsr sid_play
    jmp $ea81

bitmap_mode
; bitmap graphics multicolor
    lda #$3b
    sta reg_d011
    lda #$18
    sta $d016
; switch to video bank 2 ($4000-$7FFF)
    lda $dd00
    and #$fc
    ora #$02
    sta $dd00
    lda #$18
    sta $d018
    rts

text_mode
; set text mode hires
    lda #$1b
    sta reg_d011
    lda #$08
    sta $d016
; switch to video bank 1 ($0000-$3FFF)
    lda $dd00
    and #$fc
    ora #$03
    sta $dd00
; set charset location
; 7 * 2048 = $3800, set in bits 1-3 of $d018
    lda $d018
    ora #$0e
    sta $d018
    rts

load_bitmap
    lda bitmap_bgcolor
    sta $d020
    sta $d021
    ldx #$00
copy_bmp
; screen memory
    lda bitmap_data,x
    sta screen_mem,x
    lda bitmap_data+256,x
    sta screen_mem+256,x
    lda bitmap_data+512,x
    sta screen_mem+512,x
    lda bitmap_data+768,x
    sta screen_mem+768,x
; color memory
    lda bitmap_color,x
    sta color_mem,x
    lda bitmap_color+256,x
    sta color_mem+256,x
    lda bitmap_color+512,x
    sta color_mem+512,x
    lda bitmap_color+768,x
    sta color_mem+768,x
    inx
    bne copy_bmp
    rts

init_text
    ldx #$00
copy_txt
    lda text1,x
    sta $0400+520,x
    lda text2,x
    sta $0400+640,x
    lda text3,x
    sta $0400+640+120,x
    lda #$06
    sta color_mem+520,x
    lda #$0e
    sta color_mem+640,x
    lda #$0e
    sta color_mem+640+120,x
    inx
    cpx #$28
    bne copy_txt
    rts


text1
    !scr  "     back to oldskool demos in 2024     "
text2
    !scr  "   greetings to bigred & tyrone & edk   "
text3
    !scr  "     a lot to relearn - keep coding!    "