Category Archives: IOT / Domoticz

Home Assistant Voice and OpenMqttGateway

Yesterday I got my Home Assistant Voice!

This is a Non-Cloud solution like Alexa and Google devices.
I only could play with it for a few minutes because I was working on Arduino code with an ILI9341 Display and a BME280 (Temperature/Humidity/Air pressure).

Today I got some new goodies in, one of these is a LilyGO LoRa display which works on 433 Mhz.

I flashed OpenMQTTGateway on this device.

In the past, I posted about the RFCOM Gateway using Domoticz.
This runs on a Raspberry Pi.
While looking for alternatives, I found a rtl-sdr solution.

https://github.com/merbanan/rtl_433

Using this:

But I liked the ESP32 solution more.
Now I can dismantle Domoticz, which served me well for many years.

How cool to see realtime updates!

Note: This is a receiver device only!
But I only use read-only sensors like : Door/window, doorbell, temperature/humidity and Firesensors.

These are automatically detected in Home Assistant.

No more RFXCOM with a Raspberry.

Display work

While working on a client project, I tested multiple displays.

  • ILI9341
  • 1.3inch SPI TFT LCD Display RGB (ST7789)
  • Waveshare 4.2 Epaper with ESP32 Controller

I thought it was fun to connect the Epaper to ESPHome.

This probably ends up being a Quote displayer
Universal e-Paper Driver Board with WiFi / Bluetooth SoC ESP32 onboard, supports various Waveshare SPI e-Paper raw panels

It was not without problems. For example, the ESPHome editor gave squiggly lines under type.
This has to be changed in the libraries.
(Already notified developers)

model: 4.20in-V2 does not work .. use model: 4.20in-v2

esphome:
  name: epaperqoute
  friendly_name: epaperqoute

esp32:
  board: esp32dev
  framework:
    type: arduino

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "tzRSzZky3Jk+hUYtiybzT90kxxxxxxxxxxxxxxxxxxxxx="

ota:
  - platform: esphome
    password: "4f127e114a7a44fxxxxxxxxxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Epaperqoute Fallback Hotspot"
    password: "yLSoxxxxxxxxxx"

captive_portal:


external_components:
  - source: github://pr#6209
    components: [ waveshare_epaper ]

text_sensor:
  - platform: homeassistant
    entity_id: input_text.epaper_display_text
    id: epaper_display_text
    on_value:
      then:
        - component.update: epaperdisplay
    
spi:
  clk_pin: GPIO13
  mosi_pin: GPIO14

# Upload own ttf to a directory in esphome/fonts using file editor in Home Assistant
font:
  - file: "fonts/newspaper.ttf"
    id: tahoma
    size: 64

http_request:
  verify_ssl: false

# image test
online_image:
  - url: "https://www.henriaanstoot.nl/epapertest.png"
    id: example_image
    format: PNG

#it.image(0, 0, id(example_image));

display:
  - platform: waveshare_epaper
    id: epaperdisplay
    cs_pin: GPIO15
    dc_pin: GPIO27
    busy_pin: GPIO25
    reset_pin: GPIO26
    model: 4.20in-v2
    reset_duration: 200ms
    update_interval: never
    lambda: |
           it.printf(0, 0, id(tahoma), "%s", id(epaper_display_text).state.c_str());  

BLD-305S and Arduino

Part of a client’s build for powerful DC motors, so no details

Controlling this with an Arduino is straightforward, except for the SV signal.

This controls the speed using a voltage level.
A Uno has analog inputs, no outputs.

The trick is using a digital potmeter.

256 steps potmeter MCP41100

#include <SPI.h>
int svpin = 5;
setup:
  pinMode(svpin, OUTPUT);

loop:
// SPI Digital potmeter
  digitalPotWrite(0x20);

Divers …

Running into some Ubuntu machines with keyboard mouse problems after upgrading to 24.04

fix:

apt get install xserver-xorg-input-synaptics
apt get install xserver-xorg-input-all

3D printing some test models generated with AI from a photo to make some boardgame pieces.

Meanwhile, I am testing big motor controllers for a new client.

Last week I was at a friend’s place, time to make a launcher creator in bash

#!/bin/bash
#
if [ $# -lt 2 ]; then
	echo "createlauncher.sh name (path/bin) path/name"
    exit 1
fi


cat << EOF > /tmp/$1
[Desktop Entry]
Type=Application
Terminal=false
Name=$1
Icon=~/bin/icon/$1.png
Exec=$2 $3
EOF

cp /tmp/$1  ~/.local/share/applications/$1.desktop
update-desktop-database

Made a cable holder in my lab (Already modded)
Can be folded upwards.

Did a lot of work in my new lab/workshop.

Got some cool new tools in. Post later

Also working on a new arrangement for a bagpipe tune.

New tests for animatronics

Controlling windscreen wipers with Arduino for animatronics.

I was looking for a cheap solution to control movement, for example Halloween puppets.

I used a XY-160D dual 7A high amperage 12V controller to control a windscreen wiper.

Using a Arduino Uno and some simple code, I got movement out of the 12V motor.

Pins used:
Vcc – Arduino 5V
GND – Arduino GND
ENA – Arduino PWM pin
IN1 & IN2 (controls direction) – Two arduino output pins

Reconfiguring an old home automation controller.

After a long time, another post!
We have been to 4 states on the west coast of America for almost 4 weeks, after that a pneumonia kept me from doing stuff.

Slowly, I started finishing my Workshop/Lab for my new business.
So I didn’t have many things to post about.
So now I’ll post something about this Home Assistant solution, because there was not a decent post to be found about this solution.

Some history: A long time ago I made a 4 button 4 led controller with my friend Duncan.
At that time we were using Domoticz, and used a NodeMcu with ESP Easy to read the button states and made the leds act as status lights.

This is made using a NodeMCU (8266) but ESP32, Wemos, whatever will work also.
We wanted to repurpose the old NodeMCU, instead of building a new one.

So Migrating to Home Assistant:
How to install ESPHome is easy to find on the internet.

Below is an example for 4 push buttons which TOGGLE a Home Assistant entity.
And the LEDs will give a feedback of the state of an entity.

Note: There is 1 out of 4 configured like that. The other ones are generic.
One button toggles my shelly lab ledlight, and lights up a led when toggled!

switch.labled_relay_0 = shelly read state for led

on press toggle switch.shellyplug_s_0c5d08

 esphome:
  name: 4butttest
  friendly_name: 4butttest

esp8266:
  board: esp01_1m

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx="

ota:
  - platform: esphome
    password: "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "4Butttest Fallback Hotspot"
    password: "xxxxxxxxxxxxxxxxxxx"

captive_portal:

output:
  - platform: gpio
    id: status_led
    pin: GPIO15

binary_sensor:
  - platform: homeassistant
    id: labledstate
    entity_id: switch.labled_relay_0
    on_state:
      then:
        - lambda: |-
            if (id(labledstate).state) {
              id(status_led).turn_on();
            } else {
              id(status_led).turn_off();
            }
  - platform: gpio
    name: "PinGPIO2"
    pin: 
      number: GPIO2
      inverted: true
    on_press:
      - homeassistant.service:
          service: homeassistant.toggle
          data:
            entity_id: switch.shellyplug_s_0c5d08
  - platform: gpio
    name: "PinGPIO0"
    pin: 
      number: GPIO0
      inverted: true
  - platform: gpio
    name: "PinGPIO3"
    pin: 
      number: GPIO3
      inverted: true
  - platform: gpio
    name: "PinGPIO1"
    pin: 
      number: GPIO1
      inverted: true

switch:
  - platform: gpio
    pin: GPIO13
    name: OutGPIO13
  - platform: gpio
    pin: GPIO12
    name: OutGPIO12
  - platform: gpio
    pin: GPIO14
    name: OutGPIO14

Left the entities and don’t forget right … give the esphome device rights to perform HA actions!

Not the best pins chosen, because of design based on old setup.
Resistors are 330 ohm (didn’ t want bright leds)

Bash-completion, C64 Pico Amplifier and Laser cutting

Worked on bash autocompletion for QP

source below script to get
qp <tab><tab> shortcode

Not happy with both versions yet …

#/usr/bin/env bash

# Version 0.1
qpcompl()
{
  COMPREPLY=($(compgen -W "$(qp | cut -f2 -d \' )" "${COMP_WORDS[1]}"))
}
complete -F qpcompl qp
--------------------------------------------------------------------------------------
# V 0.2
_qp_complete() {
    local cur prev opts
    COMPREPLY=()
    cur="${COMP_WORDS[COMP_CWORD]}"
    prev="${COMP_WORDS[COMP_CWORD-2]}"
    opts="add del"

    case "${prev}" in
        add)
            COMPREPLY=( $(compgen -d -- ${cur} ))
            return 0
            ;;
        del)
            COMPREPLY=( $(compgen -f -- ${cur}) )
            return 0
            ;;
        *)
            COMPREPLY=( $(compgen -W "$(echo add; echo del ;echo "" ; qp)" -- ${cur}) )
            return 0
            ;;
    esac
}

complete -F _qp_complete -o nospace qp

Game controllers : left into right setup

My Bus Manipulator

And a Jigsaw in progress (with our own made clock in the background)

C64 Pico Amplifier

My C64 had a problem with previous attached speaker.
It drew too much current to drive. And random characters where printed.
Choosing another speaker and a minimal amplifier solved the issue.
(Thanks to Bigred finding the problem at Bornhack 2024)

My minimal amplifier for:

Using below mini speaker:

QuickPath and laser cut designs

Today I made a Linux version of Tyrone’s QuickPath tool.

My friend Tyrone came up with a great idea.

A directory switching tool, to move around in often used directories.
You can use a keyword to move around. These keywords are configured in a config file.
Even starting Total Commander with preset directories.
Work/Private/Programming environments.
His version uses PowerShell, but he wanted a multiplatform version, so we have chosen to use Python on both environments.

My version uses Python and Bash.
(Bash is used for a change directory workaround on Linux and bash completion.)

Source will be in Tyrone’s git when finished.

Options:

  • qp – lists config items with number and short key
  • qp 1 or qp c64demo – changes directory to below example
  • qp add c64demo /data/store/git/projects/c64code2024 – add a entry
  • qp del 1 – removes entry
  • qp mc tmp c64demo – starts midnight commander with left and right directories

Tomorrow some laser cutting, so let’s design some things to cut.

  • Jigsaw test – using engraving and cutting
  • Make a front for my bus manipulator
  • Make some cases for the game controllers (These are beta, and will be 3D printed at a later stage. My old 3D printer is slow)

Reverse engineering Newton wars, giving it my own twist.

Saw a cool game a while ago, and found some old code.
There was no schematic, so I had to reverse engineer it using the Arduino code.
This one uses a Micro Pro.

Build a working version, now I can use this as base to create other games.
But first i’m going to rebuild it so it can use Wifi and uses a Lipo Battery. Making it usable without wires.

  • Rotary – set angle/speed (Press resets)
  • Blue – toggle angle or speed ( was rotary press )
  • Green – select digit to change
  • Red – Fire
  • Led – not completely working yet, shows color of player
    Wil be changed to addressable leds with more functions
    (Player color, energy warning and more)

Next to do:

  • Build a Wifi version with Lipo
  • Build permanent version in a case
  • Build 2nd 3th or more controllers
  • Create own games

Bornhack 2023 NFC Badge Display hack

Last week I bought an old Bornhack Badge. I thought it needed a display.

Using a SSD1306 display, and Circuitpython I made this.

( Wooded thingy contains an RFID chip ( Part of my player ))

Library and files needed:

  • font5x8.bin in root of filesystem ( just google for this file )
  • copy of adafruit_framebuf.mpy in /lib
  • copy of adafruit_ssd1306.mpy in /lib

Code: (midway some pixel examples, just uncomment)

import board
from time import sleep
import busio 
from PN7150 import PN7150
import adafruit_ssd1306
import math
import adafruit_framebuf


if True:
    # Fast 400KHz I2C
    i2c = busio.I2C(board.SCL, board.SDA, frequency = 400000)
else:
    # Regular 100kHz I2C
    i2c = board.I2C()


WIDTH = 32
HEIGHT = 8

buffer = bytearray(round(WIDTH * math.ceil(HEIGHT / 8)))
fb = adafruit_framebuf.FrameBuffer(
    buffer, WIDTH, HEIGHT, buf_format=adafruit_framebuf.MVLSB
)


nfc = PN7150(i2c, board.IRQ, board.VEN)

display = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c,addr=0x3c)

assert nfc.connect()
print("Connected.")

assert nfc.modeRW()
print("Switched to read/write mode.")

display.fill(0)

display.show()

#display.fill(0)
#display.text('Hello', 0, 0, 1 )
#display.text('World', 0, 10, 1)
#display.show()
# Set a pixel in the origin 0,0 position.
#display.pixel(0, 0, 1)
# Set a pixel in the middle 64, 16 position.
#display.pixel(64, 16, 1)
# Set a pixel in the opposite 127, 31 position.
#display.pixel(127, 31, 1)
#display.show()

while True:
    display.fill(0)
    display.text('Waiting for card', 0, 0, 1 )
    display.show()

    assert nfc.startDiscoveryRW()

    print("Waiting for card..")
    card = nfc.waitForCard()
    assert nfc.stopDiscovery()

    print("ID: {}".format(card.nfcid1()))
    id = card.nfcid1()
    display.text(id, 0, 10, 1 )
    display.show()

    sleep(0.5)

Not sure about display i2c address? Use below code

import time
import board
import busio

# List of potential I2C busses
ALL_I2C = ("board.I2C()",)

# Determine which busses are valid
found_i2c = []
for name in ALL_I2C:
    try:
        print("Checking {}...".format(name), end="")
        bus = eval(name)
        bus.unlock()
        found_i2c.append((name, bus))
        print("ADDED.")
    except Exception as e:
        print("SKIPPED:", e)

# Scan valid busses
if len(found_i2c):
    print("-" * 40)
    print("I2C SCAN")
    print("-" * 40)
    while True:
        for bus_info in found_i2c:
            name = bus_info[0]
            bus = bus_info[1]

            while not bus.try_lock():
                pass

            print(
                name,
                "addresses found:",
                [hex(device_address) for device_address in bus.scan()],
            )

            bus.unlock()

        time.sleep(2)
else:
    print("No valid I2C bus found.")