Tag Archives: hardware

68000 ODD EVEN Decoder

First setup to make an address decoder for my 68k

000000 - 007FFF 32k * 16 bits RAM
F80000 - FBFFFF IO0,1,2,3,4
FF0000 - FFFFFF 32k * 16 bits ROM

We need /LDS and /UDS for odd even select, because rom and ram are 8 bits chips.

Also we are not decoding all address lines.

x0xxxx - RAM
F8xxxx - IO
FFxxxx - ROM

This means there are blocks repeated

Address lines
23 22 21 20 19 18 17 16 .....
1  1  1  1  1  1  1  1  * ..... ROM
0  0  0  0  0  0  0  0  * ..... RAM
1  1  1  1  1  0  *  *  * ... IO but A17 A16 are sub selects

Code for ATF22v10
Not used yet! .. not verified!

-------------
GAL22V10
68000addr

Clock   A23   A22   A21   A20    A19   A18    A17    A16    LDS  UDS   GND
/OE   ODDRAM   EVNRAM  ODDROM    EVNROM    IO0    IO1   IO2    IO3   NC   NC VCC


/ODDRAM = /A23 * /A22 * /A21 * /A20 * /A19 * /A18 * /A17 * /A16 * /LDS
/EVNRAM = /A23 * /A22 * /A21 * /A20 * /A19 * /A18 * /A17 * /A16 * /UDS
/ODDROM = A23 * A22 * A21 * A20 * A19 * A18 * A17 * A16 * /LDS
/EVNROM = A23 * A22 * A21 * A20 * A19 * A18 * A17 * A16 * /UDS
/IO0 = A23 * A22 * A21 * A20 * A19 * /A18 * /A17 * /A16 * /LDS
/IO1 = A23 * A22 * A21 * A20 * A19 * /A18 * /A17 * A16 * /LDS
/IO2 = A23 * A22 * A21 * A20 * A19 * /A18 * A17 * /A16 * /LDS
/IO3 = A23 * A22 * A21 * A20 * A19 * /A18 * A17 * A16 * /LDS

DESCRIPTION
A 68000 addr decoder
---------------------------


UPDATE

I’ve got some K6T4008C1B RAM chips now.
These are 512k, but I don’t need that much (for now)
So I’ll still use above decoder and below schematic

68000 SBC, C64 Git and SID Player

Working on 68000 Single Board Computer.

Made a clock circuit and busy designing a power-on-reset schematic. I’ve made one before, but this circuit needs RESET and HALT being pulled low.

8mhz 5V

The 68000 being 24 bit address and 16 bit data needs 2x 8-bit roms and 2x 8 bit ram, but i didn’t have the components yet in this picture.

Address decoder using ATF22V10C is also halfway.
Schematics online soon.

Started a protected Git repo for C64 demo and proof of concepts for our old ICECREW group.

Installed Gitea, behind a reverse proxy.
Part of reverse proxy

ProxyRequests Off
ProxyPreserveHost On
SSLProxyVerify none
SSLProxyCheckPeerCN off
SSLProxyCheckPeerName off

<Location />
ProxyPass   http://10.x.y.z:3000/
ProxyPassReverse  http://10.x.y.z:3000/
Require ip 213.10.144.27
Require ip a.b.c.d
Require ip e.f.g.h
</Location>

Gitea config with token login over https

Generate token
Login https://icecrew.henriaanstoot.nl/

Select your profile (upper right)

And select Settings > Applications

Select a name for your token. And press generate

Top screen shows a token, copy this!

Create new project
Press explore (upper left)

Select organisation and icecrew

Press New Repository, give a name and create

(press https when not defaulted, there is NO ssh to this server)

The example is wrong! (Use below changing TOKENHERE and PROJECTNAME

touch README.md
git init -b master
git add README.md
git commit -m "first commit"
git remote add origin https://TOKENHERE@icecrew.henriaanstoot.nl/icecrew/PROJECTNAME.git
git push -u origin master

Clone a project
Goto a project

press HTTPS when not defaulted to this.

git clone https://icecrew.henriaanstoot.nl/icecrew/borderflag.git 

edit .git/config and add your token to the url ! to push

My Sidplayer as an option to select own collection.
And I’ve made a top list

# Best composers (no order)
Ouwehand_Reyn
Tel_Jeroen
Huelsbeck_Chris
Rowlands_Steve
Hubbard_Rob
Daglish_Ben
Follin_Tim
Gray_Matt
Tjelta_Geir
Mibri (from get in the Van)

# Best tunes (no order)
R-Type.sid
Arkanoid.sid
Bottom.sid
Turbo_Outrun.sid
A_Tune_for_Unity.sid
Ohne_Dich_Rammstein.sid

# Start of own collection (not in above collection)
Abyssus_Ignis_[8580].sid
Catastrophe_[8580].sid
Dumb_Terminal_[8580].sid
Get_in_the_Van_[8580].sid
Getting_in_the_Van_[8580].sid
Supercharger_[8580].sid
Tuna_Guitar_[8580].sid

Investigating syncing effect to Sid music.

I got a great tip from Youth who made the Freakandel demo presented at X2024.

> Setup the loop to play the music

> Copy part of the memory to the screen ($0400) in the same loop to look for memory locations that are used as variables for the music. > Looking at

> Memory where the music is stored

> Zeropage ($00-$ff)

> See if there's some useful changes that coincide with for example drums

> For my own tunes, I use a music routine where I can put event markers in the music itself and react to those from the code. That's >how I synced https://www.micheldebree.nl/posts/big_angry_sprite/

> You could also try reading the SID registers for voice 3 (waveform and ADSR), those are the only ones that are not write-only. > Obviously you can then only react to those changes in voice 3.

I used retrodebugger to see which bytes are changing.
Then I wrote a program which changes the background colour to this value.
I also made a program to use a joystick to see which address have the most interesting effect.
(use up)

     1                                       !to "sidbgnd.prg",cbm
     2                          
     3                                  * = $0801
     4                          			
     5                          sysline:	
     6  0801 0b0801009e323036...        !byte $0b,$08,$01,$00,$9e,$32,$30,$36,$31,$00,$00,$00 ;= SYS 2061
     7                          
     8                                  * = $080d 
     9                          
    10  080d 78                 	sei
    11  080e a960               	lda #<irq
    12  0810 a208               	ldx #>irq
    13  0812 8d1403             	sta $314
    14  0815 8e1503             	stx $315
    15  0818 a91b               	lda #$1b
    16  081a a200               	ldx #$00
    17  081c a07f               	ldy #$7f 
    18  081e 8d11d0             	sta $d011
    19  0821 8e12d0             	stx $d012
    20  0824 8c0ddc             	sty $dc0d
    21  0827 a901               	lda #$01
    22  0829 8d1ad0             	sta $d01a
    23  082c 8d19d0             	sta $d019 
    24  082f a900               	lda #$00
    25  0831 200010             	jsr $1000 
    26  0834 58                 	cli
    27  0835 a920               	lda #$20
    28  0837 8d6b08             	sta vector
    29  083a a917               	lda #$17
    30  083c 8d6c08             	sta vector+1
    31  083f a000               	ldy #$00
    32  0841 b93017             hold 	lda $1730,y
    33  0844 8d20d0             	sta $D020
    34  0847 ad00dc             	lda $dc00
    35  084a 2901               	and #$1
    36  084c c901               	cmp #$1
    37  084e f0f1               	beq hold
    38  0850 ad00dc             	lda $dc00
    39  0853 2901               	and #$1
    40  0855 c900               	cmp #$0
    41  0857 f0e8               	beq hold
    42  0859 c8                 	iny
    43  085a 8c6d08             	sty vector+2
    44  085d 4c4108             	jmp hold 
    45                          irq
    46  0860 a901               	lda #$01
    47  0862 8d19d0             	sta $d019 
    48  0865 200310             	jsr $1003 
    49  0868 4c31ea             	jmp $ea31
    50                          
    51                          vector
    52  086b 0000               	!byte $00,$00
    53                                      
    54                          	* = $1000
    55  1000 4c37104c85104c2f...	!binary "Techno_Drums.sid" ,, $7c+2

Amiga and DIY 68000 single board computer.

Started working on my breadboard version of a 68k computer.
When it’s working, I’ll make a PCB version.
Using almost only parts I still have. (No 8mhz crystal)

The 68000 being 24 bit address and 16 bit data needs 2x 8-bit roms and 2x 8 bit ram, but i didn’t have the components yet in this picture.

While tinkering with above, my Fatter Agnus chip came in.

To make a 1mb chipmem version of your rev 5 amiga (PAL)

You need to have a newer version of the Agnus chip (I had 8371, and bought a 8372a) AND you need a 512kb trapdoor memory expansion.

An unmodded rev 5 will see 512kb Chip mem and 512 Fast mem.

Replacing the Agnus 8371 for 8372a:
I lost my PLCC puller, so I modded a paperclip into a puller 🙂

When placing the new chip, I had to tape pin 41 for PAL version.
I used Polyimide Film tape.

Next I had to cut the jumper 2 connection and solder the other pads.
(Bottom and middle disconnect and middle and top bridged)

Next was another cut on the PCB, this disables the trapdoor card detection.

Success!

Notes for next projects I made using our short holiday in Madeira.

I think we’ve seen Maderia .. 🙂

I bought a little notebook while being there.
I wrote about 12 pages of ideas, schematics and projects to start.

  1. Rewrite Wozmon to use my composite pcb (Atmega328)
    access though via
  2. Building a 68000 pcb with a minimal machine code monitor.
    Using a atf22v10 as address decoder.
    (Same as my 6502 , I love those devices)
    Maybe I’ll add a micro sdcard reader
  3. Add a lcd matrix display to my 8088/8086
  4. Creating a PLA alternative for C64 using ath22v10 (again)
  5. Make backplanes for my 6502, so I can plug cards with different POC cards.
    Clockcard, Latched bus leds, multiple VIA’s, IRQ controller, SID + Buzzer (Maybe also AY-3-8910, see other posts), LCD, composite, serial, Matrix and serial_usb) keyboard)
  6. IRQ controller because I have some devices without opendrain, so I can’t tie all IRQ’s together
  7. Amiga Chip Mem mod for rev 5 (using a ‘new’ 8372A)
  8. 8085 Cartridge new approach
  9. C64Pico fix and add backplane + breadboard version for POCs
  10. … more
First version PLA with atf22v10
PCB mockup (two ATF22v10 on top and a wide pin setup for placement in C64
Wide PLA

8085 Cartridge revisited

Working on 8085 cartridge

Problem with cartridge: prg is 17k, exomized 10k.
So you need 2 banks of 8k.
This disables basic rom, needed for the program.
The program needs to be relocated to 0x800 anyway.
So my exomizer options will take care of that.
But the basic is not being enabled again.

exomizer sfx sys -o data.exo -Di_ram_enter=\$37 -Di_ram_during=\$34 -f'LDA #$37 STA $01' 8085.prg 
xa frame.asm -o frame.bin
x64 -cart16 frame.bin 

Result … JAM

68000 Build environment

For my new SBC I’ll need a machine code build environment.

This is what I’ve setup now.

My main workstation is Linux based. While this setup is Linux based, vasm should work on other operating systems also.

Getting and compiling vasm for 68k

wget http://sun.hasenbraten.de/vasm/release/vasm.tar.gz
tar xzvf vasm.tar.gz
cd vasm
# Building
make CPU=m68k SYNTAX=oldstyle
# Using
./vasmm68k_oldstyle -m68000 -Fbin -dotdir -no-opt source.asm
# this generates a.out

# Dumping the file (byte separated and with a offset of 0x8000)
xxd -g 1 -o 0x8000 a.out | head
00008000: 30 3c aa aa 4e f9 00 00 80 04 00 00 00 00 00 00  0<..N...........
00008010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00008090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

# But my 68k needs an ODD EVEN eeprom 
# so I used another tool - romsplit
git clone https://github.com/ullman/romsplit
cd romsplit
make all
# Using romsplit
./romsplit -s a.out odd.rom even.rom
# Split into 4? Split the splits using above
# Output
xxd -g 1 -o 0x8000 odd | head -1 ; xxd -g 1 -o 0x8000 even | head -1
00008000: 30 aa 4e 00 80 00 00 00 00 00 00 00 00 00 00 00  0.N.............
00008000: 3c aa f9 00 04 00 00 00 00 00 00 00 00 00 00 00  <...............
# Burn these with minipro

Disassemble

m68k-linux-gnu-objdump --disassemble-all --target=binary --architecture=m68k a.out

68030 example for friend

# Compile vasm with
make CPU=m68k SYNTAX=mot
------------
vasmm68k_mot  -Fbin  ./edk.asm
-------------
.68030

	ORG $0

*****
* exception table (256 x 4 bytes)
*****
	dc.l $400	; Program Counter na reset (startadres)
	dc.l $20000	; stackpointer (ram locatie)
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0

	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	dc.l 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

	org $400	; hier starten
	move.l #$0,d0
loop1:
	add.l #$1,d0
	cmp.l #$10000,d0
	bne loop1

	move.l #$0,d0
loop2:
	add.l #$1,d0
	cmp.l #$10000,d0
	bne loop2

	nop
	nop
	nop
-----
vasm 1.9f (c) in 2002-2023 Volker Barthelmann
vasm M68k/CPU32/ColdFire cpu backend 2.6c (c) 2002-2023 Frank Wille
vasm motorola syntax module 3.18 (c) 2002-2023 Frank Wille
vasm binary output module 2.3a (c) 2002-2023 Volker Barthelmann and Frank Wille

org0001:0(acrwx1):	           0 bytes
org0002:0(acrwx1):	        1024 bytes
org0003:400(acrwx2):	          30 bytes
-----
-rw-rw-r--  1 henri    henri       1054 aug 27 11:45  a.out

Multiple computer systems in a carrying case.

Test picture of a multiprocessor computer setup.
Using buttons on the right, I want the possibility to change between systems and keyboard settings.
Also, multiple software/OS slots for SDCards will be on the right.

Mockup using a laptop display (eeepc) a bought display controller and a pi2 with Faux86

The lid containing the keyboard has a handle!

After laser cutting a nice front, it could become a nice road warrior hacking station.

I’m going to replace the wireless keyboard, probably with a touch display and a programmable layout for keyboards.
Something like below

Some layouts:

I’ll probably buy this one from waveshare

Info about Faux86

  • 8086/8088, V20, 80186 and limited 286 instruction set.
  • Configurable CPU speeds from 5Mhz up to 100Mhz.
  • Custom Hardware BIOS’s supported.
  • Supports bootable disk images in .img and .raw file format.
  • CGA / EGA / VGA Colour Video emulation, with most modes supported.
  • PC Speaker, Adlib, Soundblaster and Disney SoundSource.
  • UART Com Ports.
  • Standard PC XT Keyboard.
  • Serial Port 2-Button mouse.

New POC / WIP Rfid Read/Write

yes, again. Another change.

UPDATE: Working example at bottom!

Micros*ft Surface Running Linux!

I don’t want IDs and Paths in a Home Assistant automation.
The RFIDs can store more than enough data to store the paths to albums.

I Also tested with ESPHOME in HA, but you can’t write tags.

ESPHOME Config for my RFID device (NOT USED ANYMORE)

esphome:
  name: rfidtag
  friendly_name: rfidtag

esp8266:
  board: d1_mini

mqtt:
  broker: IPMQTTBROKER

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "xxxxxxxxxxxxxxxxxx="

ota:
  password: "xxxxxxxxxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Rfidtag Fallback Hotspot"
    password: "xxxxxxxxxxxxxx"

captive_portal:
    
spi:
  clk_pin: D5
  miso_pin: D6
  mosi_pin: D7
rc522_spi:
  cs_pin: D8
  update_interval: 1s
  on_tag:
    then:
      - mqtt.publish:
          topic: rc522/tag
          payload: !lambda 'return x;'
  on_tag_removed:
    then:
      - mqtt.publish:
          topic: rc522/tag_removed
          payload: !lambda 'return x;'

The next iteration of my Rfid controller will have a write function for the RFID tags.

  1. Stick a tag on a cover art piece of cardboard. (see below)
  2. Read path from data sector.
    • Send path to player automation
  3. Send path to program using MQTT or website if needed.

Not sure yet, also want to implement a wifi manager on the wemos.

Changes on above idea:

  • Paths are too long, I could not work out how to create a working program using this.
  • I stopped using paths, instead I’m using the Logitech media server album IDs.
  • Using two python scripts, I can use one for programming the card, and another script to control LMS.

How does it work

RFid device is connected to the network.

Start query.py on your LMS server.
Search for an album name, it will present an ID and Album name in a list.
Enter the ID you want to program, or 0 to exit.
(This will also reset the programming mode)

Place an empty or previously programmed tag on the device.
It will write the album ID on the tag.

Then it will start the album.
Changing the tags will also just change the album playing.

(NOTE: My genre spotify player still works using this method, using the same device)

A second python script will read the Mqtt topic and control the Squeezebox player.

Python Code DB Query

import sqlite3
#paho-mqtt
import paho.mqtt.publish as publish

host = "IPMQTTBROKER"
port = 1883
topic = "spotify/rfid/in/write"
auth = {'username': 'xxxx','password': 'xxxxx'}
client_id = "spotithing"

def readSqliteTable(albumname):
    try:
        sqliteConnection = sqlite3.connect('/var/lib/squeezeboxserver/cache/library.db')
        cursor = sqliteConnection.cursor()
        albumname = "%" + albumname + "%"
        cursor.execute("select * from albums where title Like ?",
               (albumname,))
        records = cursor.fetchall()
        for row in records:
            print("Id: ", row[0],row[1])
        cursor.close()

    except sqlite3.Error as error:
        print("Failed to read data from sqlite table", error)
    finally:
        if sqliteConnection:
            sqliteConnection.close()

album = input("Album name ? ")
readSqliteTable(album)

number = input("Enter ID or 0 to quit : ")
publish.single(topic, "00000" , qos=1, hostname=host, port=port,
        auth=auth, client_id=client_id)
if number == 0:
        exit()
publish.single(topic, number, qos=1, hostname=host, port=port,
        auth=auth, client_id=client_id)
print("Program your tag")
print("Reset/disable writing using exit with 0!")

Python Code Controller (this one needs to be running at all times)

import paho.mqtt.client as mqtt
import urllib.request

def on_connect(client, userdata, flags, rc):  
        print("Connected with result code {0}".format(str(rc)))
        client.subscribe("spotify/rfid/idlms")

def on_message(client, userdata, msg):
        print("Message received-> " + msg.topic + " " + str(msg.payload))  # Print a received msg
        urllib.request.urlopen("http://IPADDRESLMS:9000/anyurl?p0=playlistcontrol&p1=album_id:" + msg.payload.decode() + "&p2=cmd:load&player=b8:27:eb:11:16:ab")
#NOTE also change b8:27:eb:11:16:ab into you players MACAddress!

client = mqtt.Client("digi_mqtt_test")  
client.on_connect = on_connect  
client.on_message = on_message  
client.connect('IPMQTTBROKER', 1883)
client.loop_forever()  

Arduino Code (see schematic in other post)

#include <Arduino.h>
#include <SPI.h>
#include <MFRC522.h>
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <PubSubClient.h>
#define SS_PIN 15
#define RST_PIN 0
MFRC522 mfrc522(SS_PIN, RST_PIN);
  MFRC522::StatusCode status; //variable to get card status
  byte buffer[18];  //data transfer buffer (16+2 bytes data+CRC)
  byte size = sizeof(buffer);
  uint8_t pageAddr = 0x06;  //In this example we will write/read 16 bytes (page 6,7,8 and 9).
                            //Ultraligth mem = 16 pages. 4 bytes per page.  
                            //Pages 0 to 4 are for special functions.           
unsigned long cardId = 0;
WiFiClient net;
PubSubClient client(net);
const char* mqtt_server = "IPMQTTBROKER";
const char* ssid = "MYSSID";
const char* password = "MYSSIDPASS";
String topicStr = "";
byte buffer2[8];

boolean Rflag=false;
int r_len;
char payload[5];
byte value[5];
void setup() {
  Serial.begin(9600);
  SPI.begin();
  mfrc522.PCD_Init();
  WiFi.mode(WIFI_AP_STA);
  WiFi.begin(ssid, password);
  client.setServer(mqtt_server, 1883);
     delay(100);
    client.setCallback(callback);
      delay(100);
    client.subscribe("spotify/rfid/in/#");
}
void reconnect() {
  while (WiFi.waitForConnectResult() != WL_CONNECTED) {
  }
  while (!client.connected()) {
    String clientId = "rfid-";
    clientId += String(random(0xffff), HEX);
    if (!client.connect(clientId.c_str(), "rfidclient", "...")) {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      delay(5000);
    }
  }
  client.subscribe("spotify/rfid/in/#");
}
void callback(char* topic, byte* payload, unsigned int length) {
 
  Serial.print(F("Called"));
   Rflag=true; //will use in main loop
   r_len=length; //will use in main loop
   Serial.print("length message received in callback= ");
   Serial.println(length);
   int j=0;
     for (j;j<length;j++) {
       buffer2[j]=payload[j];
       }
if (r_len < 3) {
  Rflag=false;
  Serial.print(F("Set false"));
}
buffer2[j]='\0'; //terminate string
}

void loop() {
    if (!client.connected()) {
    reconnect();
  }
  client.loop();
  if (!mfrc522.PICC_IsNewCardPresent()) {
    return;
  }
  if (!mfrc522.PICC_ReadCardSerial()) {
    return;
  }
if (Rflag) {
        for (int i=0; i < 4; i++) {
    //data is writen in blocks of 4 bytes (4 bytes per page)
    status = (MFRC522::StatusCode) mfrc522.MIFARE_Ultralight_Write(pageAddr+i, &buffer2[i*4], 4);
    if (status != MFRC522::STATUS_OK) {
      Serial.print(F("MIFARE_Read() failed: (W) "));
      Serial.println(mfrc522.GetStatusCodeName(status));
      return;
    }
  }
  Serial.println(F("MIFARE_Ultralight_Write() OK "));
  Serial.println();
  Rflag=false;
}
  cardId = getCardId();
  char buffer3[10];
  sprintf(buffer3, "%lu", cardId);
  client.publish("spotify/rfid/id", buffer3);
  // Read data ***************************************************
  Serial.println(F("Reading data ... "));
  //data in 4 block is readed at once.
  status = (MFRC522::StatusCode) mfrc522.MIFARE_Read(pageAddr, buffer, &size);
  if (status != MFRC522::STATUS_OK) {
    Serial.println(F("MIFARE_Read() failed: (R)"));
    Serial.println(mfrc522.GetStatusCodeName(status));
    return;
  }

  Serial.println(F("Read data: "));
  //Dump a byte array to Serial
  for (byte i = 0; i < 5; i++) {
    Serial.write(buffer[i]);
       buffer2[i]=buffer[i];
    }
  client.publish("spotify/rfid/idlms", buffer,5);
  delay(1000);
  mfrc522.PICC_HaltA();
}

unsigned long getCardId() {
  byte readCard[4];
  for (int i = 0; i < 4; i++) {
    readCard[i] = mfrc522.uid.uidByte[i];
  }
  return (unsigned long)readCard[0] << 24
    | (unsigned long)readCard[1] << 16
    | (unsigned long)readCard[2] << 8
    | (unsigned long)readCard[3];
}

Amiga week

This week (while preparing for a mini retro party) I fixed some Amiga stuff.

I’ve bought a new gadget.

You place this PCB between the CPU IC socket and the CPU (68000) itself.

Now running a special floppy image, which loads a driver, I can use the 512MB sdcard as “harddisk”.

It at first ran into all kinds of hangups.
Checking everything, I found CIAB (8520) the culprit.
Timing errors I’ve never noticed before!

Switching this one with CIAA resolved the problem.
(I don’t use a printer anyway, but I have to remember that anything using the parallel port can have problems now.)

Meanwhile, I wanted to have a better control over the Amiga drives, so I’m planning to use a second switch to reassign drive numbers using a switch.

For switching Internal/External drive (df0/df1) I was using a Gotek boot switch. (Just press 3x ctrl-Amiga-Amiga)

See https://www.henriaanstoot.nl/2022/05/14/gotek-stuff/

But I have TWO external devices.
The Gotek virtual disk device and a real 5.24″ drive.

So I’m going to use a ON-ON double switch to toggle the external devices.

oppo_32

The internal switch toggles internal and external.
The secondary I’m going to build into the 5.25″ drive toggles df2 and the “df1”.
That way the internal drive can be 0 (boot) or 1.
The external drives can be 0,1 or 2.

NOTE: Switch pin 21 and 9 using the cross switch!

SO: Amiga with internal drive -> External 5.24″ which has a passthrough to the Gotek.

Another amiga thing fixed:
I re-installed Aros (on an old Laptop this time)

And third: I’ve bought the Amiga Forever cdrom.

When you get the ISO image from AmigaForever, and want to run it using Linux, do this to get it working

sudo apt install xkbfile1:i386
sudo apt install libxkbfile1:i386
mkdir -p /cdrom
sudo mount -t iso9660 ~/Downloads/AF.iso /cdrom
cd /cdrom/Private/Linux/e-uae/
./kxlight-start.sh

If you install Wine, you can use the windows gui in linux also.


Amiga samplers

Testing the sampler (demo for Tyrone)

Sampling the sound of a C64 on an Amiga.
Started (booted) the sampling program from second external drive using switch setup as above.

Even realtime echo works!