Category Archives: Computer

C64 Multipart Loader

Today I tested part loading for a demo.

I wanted this to be a multipart loader, instead of a trackloader.
A trackloader can load sector parts which I would like more.
But the C64Pico can’t do disk images. (Mcume)

C64Pico based on MCUME see building of this in other posts.

2nd reason: While I’ve written a track loader for 8086, I never did it for C64. As a kid I didn’t have a C64, so all knowledge I have is from later years.
I’ve written only a few C64 machinecode programs.

See below explanation of what happens
  • Showing makefile
  • Showing first part assembly (without text Hello 2nd part)
  • Showing second part (no sysheader) needs to be loaded at $2000
  • Compile using Acme
  • make disk image
  • and run using autostart x64 (Vice emulator)

You see the first text from the 1st assemby code, then it will load the second at $2000 and does a jmp to this address.
Second text will but displayed.

While i’ve been using KickAss in the past and some other 6502 compilers, I manly use acme.

Makefile I created to compile, create a C64 diskimage and run the program is as below. (No exomizer tools in this Makefile)

all: acme disk run

acme:
	acme testloader.asm
	acme 2ndpart.asm

disk:
	c1541 -format diskname,id d64 my_diskimage.d64 -attach my_diskimage.d64 -write loader.prg loader.prg -write 2nd 2nd

run:
	x64 my_diskimage.d64 

New POC / WIP Rfid Read/Write

yes, again. Another change.

UPDATE: Working example at bottom!

Micros*ft Surface Running Linux!

I don’t want IDs and Paths in a Home Assistant automation.
The RFIDs can store more than enough data to store the paths to albums.

I Also tested with ESPHOME in HA, but you can’t write tags.

ESPHOME Config for my RFID device (NOT USED ANYMORE)

esphome:
  name: rfidtag
  friendly_name: rfidtag

esp8266:
  board: d1_mini

mqtt:
  broker: IPMQTTBROKER

# Enable logging
logger:

# Enable Home Assistant API
api:
  encryption:
    key: "xxxxxxxxxxxxxxxxxx="

ota:
  password: "xxxxxxxxxxxxxxxxxxxxx"

wifi:
  ssid: !secret wifi_ssid
  password: !secret wifi_password

  # Enable fallback hotspot (captive portal) in case wifi connection fails
  ap:
    ssid: "Rfidtag Fallback Hotspot"
    password: "xxxxxxxxxxxxxx"

captive_portal:
    
spi:
  clk_pin: D5
  miso_pin: D6
  mosi_pin: D7
rc522_spi:
  cs_pin: D8
  update_interval: 1s
  on_tag:
    then:
      - mqtt.publish:
          topic: rc522/tag
          payload: !lambda 'return x;'
  on_tag_removed:
    then:
      - mqtt.publish:
          topic: rc522/tag_removed
          payload: !lambda 'return x;'

The next iteration of my Rfid controller will have a write function for the RFID tags.

  1. Stick a tag on a cover art piece of cardboard. (see below)
  2. Read path from data sector.
    • Send path to player automation
  3. Send path to program using MQTT or website if needed.

Not sure yet, also want to implement a wifi manager on the wemos.

Changes on above idea:

  • Paths are too long, I could not work out how to create a working program using this.
  • I stopped using paths, instead I’m using the Logitech media server album IDs.
  • Using two python scripts, I can use one for programming the card, and another script to control LMS.

How does it work

RFid device is connected to the network.

Start query.py on your LMS server.
Search for an album name, it will present an ID and Album name in a list.
Enter the ID you want to program, or 0 to exit.
(This will also reset the programming mode)

Place an empty or previously programmed tag on the device.
It will write the album ID on the tag.

Then it will start the album.
Changing the tags will also just change the album playing.

(NOTE: My genre spotify player still works using this method, using the same device)

A second python script will read the Mqtt topic and control the Squeezebox player.

Python Code DB Query

import sqlite3
#paho-mqtt
import paho.mqtt.publish as publish

host = "IPMQTTBROKER"
port = 1883
topic = "spotify/rfid/in/write"
auth = {'username': 'xxxx','password': 'xxxxx'}
client_id = "spotithing"

def readSqliteTable(albumname):
    try:
        sqliteConnection = sqlite3.connect('/var/lib/squeezeboxserver/cache/library.db')
        cursor = sqliteConnection.cursor()
        albumname = "%" + albumname + "%"
        cursor.execute("select * from albums where title Like ?",
               (albumname,))
        records = cursor.fetchall()
        for row in records:
            print("Id: ", row[0],row[1])
        cursor.close()

    except sqlite3.Error as error:
        print("Failed to read data from sqlite table", error)
    finally:
        if sqliteConnection:
            sqliteConnection.close()

album = input("Album name ? ")
readSqliteTable(album)

number = input("Enter ID or 0 to quit : ")
publish.single(topic, "00000" , qos=1, hostname=host, port=port,
        auth=auth, client_id=client_id)
if number == 0:
        exit()
publish.single(topic, number, qos=1, hostname=host, port=port,
        auth=auth, client_id=client_id)
print("Program your tag")
print("Reset/disable writing using exit with 0!")

Python Code Controller (this one needs to be running at all times)

import paho.mqtt.client as mqtt
import urllib.request

def on_connect(client, userdata, flags, rc):  
        print("Connected with result code {0}".format(str(rc)))
        client.subscribe("spotify/rfid/idlms")

def on_message(client, userdata, msg):
        print("Message received-> " + msg.topic + " " + str(msg.payload))  # Print a received msg
        urllib.request.urlopen("http://IPADDRESLMS:9000/anyurl?p0=playlistcontrol&p1=album_id:" + msg.payload.decode() + "&p2=cmd:load&player=b8:27:eb:11:16:ab")
#NOTE also change b8:27:eb:11:16:ab into you players MACAddress!

client = mqtt.Client("digi_mqtt_test")  
client.on_connect = on_connect  
client.on_message = on_message  
client.connect('IPMQTTBROKER', 1883)
client.loop_forever()  

Arduino Code (see schematic in other post)

#include <Arduino.h>
#include <SPI.h>
#include <MFRC522.h>
#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <PubSubClient.h>
#define SS_PIN 15
#define RST_PIN 0
MFRC522 mfrc522(SS_PIN, RST_PIN);
  MFRC522::StatusCode status; //variable to get card status
  byte buffer[18];  //data transfer buffer (16+2 bytes data+CRC)
  byte size = sizeof(buffer);
  uint8_t pageAddr = 0x06;  //In this example we will write/read 16 bytes (page 6,7,8 and 9).
                            //Ultraligth mem = 16 pages. 4 bytes per page.  
                            //Pages 0 to 4 are for special functions.           
unsigned long cardId = 0;
WiFiClient net;
PubSubClient client(net);
const char* mqtt_server = "IPMQTTBROKER";
const char* ssid = "MYSSID";
const char* password = "MYSSIDPASS";
String topicStr = "";
byte buffer2[8];

boolean Rflag=false;
int r_len;
char payload[5];
byte value[5];
void setup() {
  Serial.begin(9600);
  SPI.begin();
  mfrc522.PCD_Init();
  WiFi.mode(WIFI_AP_STA);
  WiFi.begin(ssid, password);
  client.setServer(mqtt_server, 1883);
     delay(100);
    client.setCallback(callback);
      delay(100);
    client.subscribe("spotify/rfid/in/#");
}
void reconnect() {
  while (WiFi.waitForConnectResult() != WL_CONNECTED) {
  }
  while (!client.connected()) {
    String clientId = "rfid-";
    clientId += String(random(0xffff), HEX);
    if (!client.connect(clientId.c_str(), "rfidclient", "...")) {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      delay(5000);
    }
  }
  client.subscribe("spotify/rfid/in/#");
}
void callback(char* topic, byte* payload, unsigned int length) {
 
  Serial.print(F("Called"));
   Rflag=true; //will use in main loop
   r_len=length; //will use in main loop
   Serial.print("length message received in callback= ");
   Serial.println(length);
   int j=0;
     for (j;j<length;j++) {
       buffer2[j]=payload[j];
       }
if (r_len < 3) {
  Rflag=false;
  Serial.print(F("Set false"));
}
buffer2[j]='\0'; //terminate string
}

void loop() {
    if (!client.connected()) {
    reconnect();
  }
  client.loop();
  if (!mfrc522.PICC_IsNewCardPresent()) {
    return;
  }
  if (!mfrc522.PICC_ReadCardSerial()) {
    return;
  }
if (Rflag) {
        for (int i=0; i < 4; i++) {
    //data is writen in blocks of 4 bytes (4 bytes per page)
    status = (MFRC522::StatusCode) mfrc522.MIFARE_Ultralight_Write(pageAddr+i, &buffer2[i*4], 4);
    if (status != MFRC522::STATUS_OK) {
      Serial.print(F("MIFARE_Read() failed: (W) "));
      Serial.println(mfrc522.GetStatusCodeName(status));
      return;
    }
  }
  Serial.println(F("MIFARE_Ultralight_Write() OK "));
  Serial.println();
  Rflag=false;
}
  cardId = getCardId();
  char buffer3[10];
  sprintf(buffer3, "%lu", cardId);
  client.publish("spotify/rfid/id", buffer3);
  // Read data ***************************************************
  Serial.println(F("Reading data ... "));
  //data in 4 block is readed at once.
  status = (MFRC522::StatusCode) mfrc522.MIFARE_Read(pageAddr, buffer, &size);
  if (status != MFRC522::STATUS_OK) {
    Serial.println(F("MIFARE_Read() failed: (R)"));
    Serial.println(mfrc522.GetStatusCodeName(status));
    return;
  }

  Serial.println(F("Read data: "));
  //Dump a byte array to Serial
  for (byte i = 0; i < 5; i++) {
    Serial.write(buffer[i]);
       buffer2[i]=buffer[i];
    }
  client.publish("spotify/rfid/idlms", buffer,5);
  delay(1000);
  mfrc522.PICC_HaltA();
}

unsigned long getCardId() {
  byte readCard[4];
  for (int i = 0; i < 4; i++) {
    readCard[i] = mfrc522.uid.uidByte[i];
  }
  return (unsigned long)readCard[0] << 24
    | (unsigned long)readCard[1] << 16
    | (unsigned long)readCard[2] << 8
    | (unsigned long)readCard[3];
}

C64Pico part 3

Today we worked on this project again. (Bigred and me)

There were some problems we needed to fix since last time:

  • It was quite hard to get the correct parts.
    Our display connector was only fitted with connection pins on the wrong side of the connector. (up/down)
    So I bought a connector with both positions populated.
    So we had to replace this hard to solder (40 pin) connector.
  • It was not clear what the orientation should be of the atmega328pb.
    We looked at the pinout, and followed the VCC/GND. But these are also available of the opposite side of the chip. (We missed that)
    Later, we saw a tiny line on the PCB, which showed the pin 1 placement.
    So we had to remove and replace the chip.
    When turning on the power, (with incorrect placement) probably fried R5 (10k resistor), on both our boards.
    Had to replace those also.
  • Programming the atmega328pb was not easy, see below fixes.
  • Compiling the pico firmware resulted in a black screen.
    Below the fixes I had to make to get the screen working.

Other things still to fix.

  • Bigreds screen.
  • atmega328p didn’t work for Bigred, so probably needs to replace with the pb version.
  • My battery controller is not charging.
    See bottom of page
  • Some of my buttons are working. The pewpew and some of the cursor keys (not as I expect, there are some up/down issues)
    And none of the other keys are working.

Some other things we noticed.

  • sdcard: remove partitions, format using mkfs.exfat
    Create a c64 directory on this filesystem where you can put the d64 files!
  • 0402 SMD is far too small for me.
    There is enough room on the board to use 0805 for example.
    Even THT is possible, there are only a few components.
  • Some components are TOO close together, removing a component resulted in other small parts disconnecting also.

My friend Bigred said: If I can see it, I can solder it.
But it is not easy. This probably keeps a lot of people from building it!

Below the diff from the source we got from:

https://github.com/silvervest/MCUME/tree/c64pico

UPDATE 20240501: We needed to clone the c64pico branch!

git clone -b c64pico https://github.com/silvervest/MCUME.git

Then it worked with the screen and keyboard!

Programming the atmega328pb using usbasp

https://www.henriaanstoot.nl/2022/06/30/morse-with-a-attiny85/
Link above shows the programmer.

To get your Arduino IDE up and running

  • Open the Arduino IDE.
  • Open the File > Preferences menu item.
  • Enter the following URL in Additional Boards Manager URLs:https://mcudude.github.io/MiniCore/package_MCUdude_MiniCore_index.json
  • Open the Tools > Board > Boards Manager… menu item.
  • Wait for the platform indexes to finish downloading.
  • Scroll down until you see the MiniCore entry and click on it.
  • Click Install.
  • After installation is complete close the Boards Manager window.

Above settings worked for me, maybe you can also try Programmer: usbasp (slow)

First install the bootloader.

When compiling the keyboard program of silvervest, you can find “Upload using programmer” in the Sketch menu!
(https://github.com/silvervest/c64pico/tree/master/keyboard)

CHARGING using BQ24230RGTT

Maybe I’ve got a problem with the ground plating of the charger.
Also very hard to solder the sides!

Amiga week

This week (while preparing for a mini retro party) I fixed some Amiga stuff.

I’ve bought a new gadget.

You place this PCB between the CPU IC socket and the CPU (68000) itself.

Now running a special floppy image, which loads a driver, I can use the 512MB sdcard as “harddisk”.

It at first ran into all kinds of hangups.
Checking everything, I found CIAB (8520) the culprit.
Timing errors I’ve never noticed before!

Switching this one with CIAA resolved the problem.
(I don’t use a printer anyway, but I have to remember that anything using the parallel port can have problems now.)

Meanwhile, I wanted to have a better control over the Amiga drives, so I’m planning to use a second switch to reassign drive numbers using a switch.

For switching Internal/External drive (df0/df1) I was using a Gotek boot switch. (Just press 3x ctrl-Amiga-Amiga)

See https://www.henriaanstoot.nl/2022/05/14/gotek-stuff/

But I have TWO external devices.
The Gotek virtual disk device and a real 5.24″ drive.

So I’m going to use a ON-ON double switch to toggle the external devices.

oppo_32

The internal switch toggles internal and external.
The secondary I’m going to build into the 5.25″ drive toggles df2 and the “df1”.
That way the internal drive can be 0 (boot) or 1.
The external drives can be 0,1 or 2.

NOTE: Switch pin 21 and 9 using the cross switch!

SO: Amiga with internal drive -> External 5.24″ which has a passthrough to the Gotek.

Another amiga thing fixed:
I re-installed Aros (on an old Laptop this time)

And third: I’ve bought the Amiga Forever cdrom.

When you get the ISO image from AmigaForever, and want to run it using Linux, do this to get it working

sudo apt install xkbfile1:i386
sudo apt install libxkbfile1:i386
mkdir -p /cdrom
sudo mount -t iso9660 ~/Downloads/AF.iso /cdrom
cd /cdrom/Private/Linux/e-uae/
./kxlight-start.sh

If you install Wine, you can use the windows gui in linux also.


Amiga samplers

Testing the sampler (demo for Tyrone)

Sampling the sound of a C64 on an Amiga.
Started (booted) the sampling program from second external drive using switch setup as above.

Even realtime echo works!

I tried to recreate an optical illusion

My friend Tyrone posted something he recorded from TV.
It was an illusion, using rotated images.

The effect is that it seems that the card is rotating at different speeds, when pressing the s (show/unshow) key, you see the card rotating at the same speed as before.

So I wanted to try to recreate this using python.
The effect is there, but a little less.
What can I improve?

Mine:

Around the 30 seconds mark I disable the background, you’ll see the card rotating as before.

Original:

Better version, larger and using s key to toggle water off, to see the card rotating

import pygame
import math

# 20240409 added s to toggle 

pygame.init()
screen = pygame.display.set_mode((1600, 900))
clock = pygame.time.Clock()

def blitRotate(surf, image, pos, originPos, angle):

    image_rect = image.get_rect(topleft = (pos[0] - originPos[0], pos[1]-originPos[1]))
    offset_center_to_pivot = pygame.math.Vector2(pos) - image_rect.center
    rotated_offset = offset_center_to_pivot.rotate(-angle)
    rotated_image_center = (pos[0] - rotated_offset.x, pos[1] - rotated_offset.y)
    rotated_image = pygame.transform.rotate(image, angle)
    rotated_image_rect = rotated_image.get_rect(center = rotated_image_center)
    surf.blit(rotated_image, rotated_image_rect)

try:
    image = pygame.image.load('cards.png').convert_alpha()
    image2 = pygame.image.load('clear+sea+water-2048x2048.png').convert_alpha()
except:
    text = pygame.font.SysFont('Times New Roman', 50).render('imagemissing', False, (255, 255, 0))
    image = pygame.Surface((text.get_width()+1, text.get_height()+1))
    image2 = image
    image.blit(text, (1, 1))

w, h = image.get_size()
angle = 0
angle2 = 0
done = False
while not done:
    clock.tick(60)
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            done = True

    pos = (screen.get_width()/2, screen.get_height()/2)
    
    screen.fill(0)
    keys = pygame.key.get_pressed()
    if (not keys[pygame.K_s]):
        blitRotate(screen, image2, pos, (900, 900), angle2)
    blitRotate(screen, image, pos, (w/2, h/2), angle)
    angle += 1
    angle2 += math.sin(math.radians(angle))
    pygame.display.flip()
    
pygame.quit()
exit()

Music Cover Art Display using ILI9341

Little Sunday afternoon project.

Two PHP scripts.

Install on your webserver (see previous post)

Resizes images and removes the onkyo header.
(See previous posts)

<?php
// onkyo.php
// write jpeg header
header('Content-type: image/jpg');

$lines = file_get_contents('http://IP-ONKYO-AMPLIFIER/album_art.cgi', false);
$lines = explode("\n", $lines);
// remove weird Onkyo header (3 lines)
$content = implode("\n", array_slice($lines, 3));
print $content;
?>

CoverArt from a squeezeboxserver

<?php    
// squeezebox.php
// leave playerid as is, for the default.
// change to MAC address of player to get coverart specific player
$img = file_get_contents('http://IP-LOGITECH_MEDIA_SERVER:9000/music/current/cover.jpg?player=<playerid>');
$im = imagecreatefromstring($img);
$width = imagesx($im);
$height = imagesy($im);
$newwidth = '240';
$newheight = '240';
$thumb = imagecreatetruecolor($newwidth, $newheight);
imagecopyresized($thumb, $im, 0, 0, 0, 0, $newwidth, $newheight, $width, $height);
//imagejpeg($thumb,'small.jpg'); //save image as jpg
header('Content-Type: image/jpeg');
imagejpeg($thumb);
imagedestroy($thumb); 
imagedestroy($im);
?>

Arduino install:

Start IDE
Install TJpg_Decoder library
Open examples>Tjpeg_decoder>SPIFFS>SPIFFS_web_spiffs
change wifi credentials
and the url to your php script.
  bool loaded_ok = getFile("https://myserver/onkyo.php", "/M81.jpg"); // Note name preceded with "/"

replace bottom part with

 // while(1) yield();
 delay(5000);
     SPIFFS.remove("/M81.jpg");

64×64 Matrixrgb plus Conway’s Game of Life

Yesterday I got this nice led matrix I mentioned before.

I wanted to control this display using Circuit Python and a Raspberry Pico.

Pico  Matrix
GP0   R1
GP1   G1
GP2   B1
GP3   R2
GP4   G2
GP5   B2
GP6   A
GP7   B
GP8   C
GP9   D
GP10  Clock
GP11  E
GP12  Latch
GP13  Output Enable

GND   GND ( I did both )

I installed Circuit Python and the following libraries.

adafruit_imageload, adafruit_display_text.label (the rest was already in the uf2 firmware.)
(Check this link : https://circuitpython.org/board/raspberry_pi_pico/ )
I could not install the Wifi uf2 file, then I got a out of storage space when installing the adafruit libraries.

importing libaries and init display

import board, digitalio, busio, time, displayio, rgbmatrix, framebufferio
import adafruit_imageload, terminalio, random
import adafruit_display_text.label

displayio.release_displays()
matrix = rgbmatrix.RGBMatrix(
    width=64, bit_depth=2, height=64,
    rgb_pins=[board.GP0, board.GP1, board.GP2, board.GP3, board.GP4, board.GP5],
    addr_pins=[board.GP6, board.GP7, board.GP8, board.GP9, board.GP11],
    clock_pin=board.GP10, latch_pin=board.GP12, output_enable_pin=board.GP13)
display = framebufferio.FramebufferDisplay(matrix)

I became interested in Conway’s “Game of Life”, in 1983. Reading a article in the Dutch Magazine Kijk.

The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial configuration and observing how it evolves. It is Turing complete and can simulate a universal constructor or any other Turing machine.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

I found these on my server. Bad quality, I know. Scanned these many years ago.

The rules are:

  1. Any live cell with fewer than two live neighbours dies, as if by underpopulation.
  2. Any live cell with two or three live neighbours lives on to the next generation.
  3. Any live cell with more than three live neighbours dies, as if by overpopulation.
  4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

When playing with the Basic code as a kid, I wanted to try if it was possible to make a 3D version of this.

I came up with the following rules:

  1. Birth : 4 alive neighbours needed
  2. Survive : 5 or 6 neighbours
  3. Dead : below 4 and over 6

I think there should be a BBC Acorn basic version I wrote somewhere.

Back to the display

Greetings to my friends
Game of Life starting with my Logo plus a glider
A single Gosper‘s glider gun creating gliders

Code for the glider gun

    conway_data = [
        b'                        +           ',
        b'                      + +           ',
        b'            ++      ++            ++',
        b'           +   +    ++            ++',
        b'++        +     +   ++              ',
        b'++        +   + ++    + +           ',
        b'          +     +       +           ',
        b'           +   +                    ',
        b'            ++                      ',
    ]

Next todo:

  • Line functions
  • Design a Chip tune hardware add-on
  • Make a Game of Life start situation selector
  • Make a new Maze game!

Home Assistant – Reboot, start,shutdown and switch OS

This is my short log about (re)starting booting machines.

configuration.yaml

#WOL to start a machine
  - platform: wake_on_lan
    name: "wakeserver"
    mac: ec:be:5f:ee:11:78

#SHELL command to remote start reboot2windows script (multiboot machine)
shell_command:
    ssh_reboottowindows: ssh -i /config/ssh/id_ed25519 -o 'StrictHostKeyChecking=no' root@192.168.1.2 '/root/reboot2windows'
shell_command:
    ssh_haltlinux: ssh -i /config/ssh/id_ed25519 -o 'StrictHostKeyChecking=no' root@192.168.1.2 'halt -p'

reboot2windows linux script (on the remote server)

#!/bin/bash
#place in /root/
#chmod +x /root/reboot2windows
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
WINDOWS_TITLE=`grep -i "^menuentry 'Windows" /boot/grub/grub.cfg|head -n 1|cut -d"'" -f2`
grub-reboot "$WINDOWS_TITLE"
reboot

install https://iotlink.gitlab.io/ on your windows instance

scripts.yaml (with a helper button rebootwindows2linux, shutdownwindows)

#Reboot windows, linux is the default
windows2linux:
  alias: rebootwinserver
  sequence:
  - service: mqtt.publish
    metadata: {}
    data:
      qos: 0
      retain: false
      topic: iotlink/workgroup/winserver/commands/reboot
  mode: single
shutdownwindows:
  alias: shutdownwinserver
  sequence:
  - service: mqtt.publish
    metadata: {}
    data:
      qos: 0
      retain: false
      topic: iotlink/workgroup/winserver/commands/shutdown
  mode: single

automation rebootlinux2windows

(using a helper button rebootlinux2windows)

alias: rebootlinux2windows
description: ""
trigger:
  - platform: state
    entity_id:
      - input_button.rebootlinux2windows
condition: []
action:
  - service: shell_command.ssh_reboottowindows
    data: {}
mode: single

Configuring ssh keys

Open HA terminal

cd
ssh-keygen (enter) (enter) (enter) (enter) 
mkdir -p config/ssh
cp ~/.ssh/id* config/ssh/ 

Arduino Tiny Machine Learning Kit

A while ago I bought a little machine learning kit.

I’ve been reading at listening to ML podcasts and websites.

One on Spotify I liked was:

Also, the following Coursera was interesting
https://www.coursera.org/learn/machine-learning

I’ve been testing using Python on my Laptop.
(see other posts)

And a camera with esp32 using face detection.

See here multiple posts about these experiments.

https://www.henriaanstoot.nl/tag/machinelearning/

Today the first experiments using this kit.

  • Arduino Nano 33 BLE Sense board
  • OV7675 Camera
  • Arduino Tiny Machine Learning Shield
  • USB A to Micro USB Cable
  • 9 axis inertial sensor: what makes this board ideal for wearable devices
  • humidity, and temperature sensor: to get highly accurate measurements of the environmental conditions
  • barometric sensor: you could make a simple weather station
  • microphone: to capture and analyse sound in real time
  • gesture, proximity, light color and light intensity sensor : estimate the room’s luminosity, but also whether someone is moving close to the board
  • Microcontroller nRF52840
  • Operating Voltage 3.3V
  • Input Voltage (limit) 21V
  • DC Current per I/O Pin 15 mA
  • Clock Speed 64MHz
  • CPU Flash Memory 1MB (nRF52840)
  • SRAM 256KB (nRF52840)
  • EEPROM none
  • Digital Input / Output Pins 14
  • PWM Pins all digital pins
  • UART 1
  • SPI 1
  • I2C 1
  • Analog Input Pins 8 (ADC 12 bit 200 ksamples)
  • Analog Output Pins Only through PWM (no DAC)
  • External Interrupts all digital pins
  • LED_BUILTIN 13
  • USB Native in the nRF52840 Processor
  • IMU LSM9DS1 (datasheet)
Gesture test ( yes on a windows surface tablet, but Vincent and I installed linux on it!)

I just started and will update this page, with other experiments.

Note: displaying Arduino output without installing the IDE

stty -F /dev/ttyACM0 raw 9600
cat /dev/ttyACM0
................................
................................
................................
................................
................................
................................
................................
................................
................................
................####............
...............##..#............
..............##...##...........
..............#.....#...........
..............###...#...........
..............##.....#..........
..............##.....#..........
...............#....##..........
...............######...........
................................
................................
................................
................................