Above is my design for a hex keyboard to enter opcodes in hex using a simple monitor program. i used a 74ls922 which can decode a 4×4 matrix. I’d rather had a 74ls723 which can encode 20 keys.
Nowhere to be found. So i have to think of a new plan.
Now it is configured as follows:
C
D
E
F
8
9
A
B
4
5
6
7
0
1
2
3
When pressing the alternate key
addr (to implement)
run (1/2 implemented)
reset (to implement)
step instruction (to implement)
memory next
memory previous
PCB design for matrix hexboard with place for notes
Meanwhile i’ve ordered new keys (the ones i’ve been using for my photomanager project and wnat to have a setup like this:
?
?
addr
run
reset
C
D
E
F
?
8
9
A
B
step
4
5
6
7
mem next
0
1
2
3
mem prev
When you want to show the status of busses and alike, you can’t use a led and restistor directly on the bus, it will require too much current. So i’ve been using below schematic which uses a darlington array.
Now i can display databus, address bus and i’ve been using this for address decoding logic and hex keyboard.
I’ve implemented a second VIA chip, and ordered components to amplify the SID sound part
Above is my Kicad design (reverse engineering print below, which was made for my 6802CPU, which i could use to test the 6822 PIA) The 6822 is simular to 6502 in design. So i’m going to redo this for my 6502. The 7 segment displays are a start of hex-keyboard/display combo i’m going to post more of in the next days.
Below a part of the rom for the LCD dual line display.
Part of the ROM assembly code, top part is text (o.a. japanese)
Started to write routines which i can call to manipulate the display. Setting the pointer to a message, setting the line to use and a subset of controlls like: Center, Right, binary to ascii, scrolling, etcetera
lda #0 ; set line number
sta lineno ; store
jsr gotoline ; goto line in display
lda #<message ; get address from message and store for printline subroutine
sta messagestore
lda #>message
sta messagestore+1
jsr printline ; print
lda #1 ; set line number
sta lineno ; store
jsr gotoline
lda #<message2
sta messagestore
lda #>message2
sta messagestore+1
jsr printline
Above additions: New address decoder Below left the new graphical display, below right a test board which shows address lines and decoded chip-enable lines.
A15 high -> ROM A15 && A14 low -> RAM combination of A15 low and A14 high – A13 and A12 wil select peripherals.
Adress decoding
Start of a wirewrapped version
Above is a start of a wirewrapped version, i also started a PCB design in KIcad that will continuously be changed as i alter designs.
UPDATE SID Working! Using new address decoder.
SID = $7000
makesound:
lda #0
sta SID+$5 ; Channel1 - attack/decay
lda #250
sta SID+$6 ; Channel1 - Sustain/Release
lda #$95
sta SID+$0 ; Channel1 - Frequency low-byte
lda #$44
sta SID+$1 ; Channel1 - Frequency high-byte
lda #%00100001
sta SID+$4 ; SAW + Gate
lda #$0f
sta SID+$18 ; Volume max
For accessing the different components in computers you have to use the Address Bus. In most 8 bits computers there are 16 address lines.
The CPU on a 6502 can access 65536 addresses (16 bit ). But most chips in the circuit have just a few address lines. So the chip to use has to be selected using a CE (chip Enable) signal.
Old article i found on my fileserver from 1984
74 Series logic
Above example uses A15 combined with A14 to address the 16K ROM When using a 32k rom in the upper part of the memory, a15 can be used as CE
The 74ALS133 is a widely used decoder due to it’s many inputs.
Sometimes not all address lines are used for decoding, then you will get a repetition of the device in the memory map.
Above 6522 VIA has only 4 address lines RS0-RS3. But 2 chipselect pins (CS). If you connect the chip as below.
The chip would be selected when A15 is 1 and A14 is 0, A13-A04 it would not listen to. So its 4 bits addresses (total 16), would be repeated in a block $8000-$BFFF (10xx xxxx xxxx aaaa) 16384 addresses for 16 addresses on the 6522
ROM
Another simple solution to get a more precise address decoder without using a lot of components is using a ROM. But this wil only work for low speeds! A eeprom is relative cheap
Example ROM as chip enable/select
PAL PLA GAL
With these devices you can “program” a schematic which works as above example’s of the 74 series. But now you can do it using only one component.
PALs and PLAs are fuse-programmed, some are erasable like (e)eprom. Below a example of the code. Most of the PAL/PLA/GAL are hard to get and obsolete
;PALASM Design Description
;---------------------------------- Declaration Segment ------------
TITLE pRAM PC_interface Address Decoder
PATTERN pRAM97A.pds
REVISION H
AUTHOR Trevor Clarkson
COMPANY EEE KCL
DATE 30/05/97
CHIP decode PALCE20V8
;---------------------------------- PIN Declarations ---------------
PIN 1 AEN COMBINATORIAL ; INPUT
PIN 2 A9 COMBINATORIAL ; INPUT
PIN 3 A8 COMBINATORIAL ; INPUT
PIN 4 A7 COMBINATORIAL ; INPUT
PIN 5 A6 COMBINATORIAL ; INPUT
PIN 6 A5 COMBINATORIAL ; INPUT
PIN 7 A4 COMBINATORIAL ; INPUT
PIN 8 A3 COMBINATORIAL ; INPUT
PIN 9 A2 COMBINATORIAL ; INPUT
PIN 10 A1 COMBINATORIAL ; INPUT
PIN 11 IOW COMBINATORIAL ; INPUT
PIN 12 GND
PIN 13 IOR COMBINATORIAL ; INPUT
PIN 14 ACK_HALT COMBINATORIAL ; INPUT
PIN 15 PLS_EN COMBINATORIAL ; OUTPUT
PIN 16 BRDW COMBINATORIAL ; OUTPUT
PIN 17 MOD_CTRL COMBINATORIAL ; OUTPUT
PIN 18 RAM_ACCESS COMBINATORIAL ; OUTPUT
PIN 19 IO_16 COMBINATORIAL ; OUTPUT
PIN 20 LATCH_MOD COMBINATORIAL ; OUTPUT
PIN 21 LATCH_ADD COMBINATORIAL ; OUTPUT
PIN 22 P300 COMBINATORIAL ; OUTPUT
PIN 23 P300IN COMBINATORIAL ; INPUT
PIN 24 VCC
;PC address decoding functions (not all in this PAL)
;uses latched address to provide low-order address lines to pRAM/RAM
; A3 A2 A1 R/W Addr Function
; 0 0 0 R 300 MFF_0
; W not used
; 0 0 1 R 302 MFF_1
; W not used
; 0 1 0 R 304 MFF_2
; W not used
; 0 1 1 R 306 MFF_3
; W Latch Module Number
; 1 0 0 R 308 PLS_Status (pRAM status)
; W PLS_Control (pRAM control)
; 1 0 1 R 30A Weight/Connection-
; W Pointer RAM access
; 1 1 0 R 30C not used
; W Latched RAM address
; 1 1 1 R 30E not used
; W pRAM_256 module control
;
; NB. IO_16 must be tri-stated when not in use
;----------------------------------- Boolean Equation Segment ------
EQUATIONS
/P300 = A9*A8*/A7*/A6*/A5*/A4*/IOR + A9*A8*/A7*/A6*/A5*/A4*/IOW
/BRDW = /P300IN * /IOW
/PLS_EN = /P300IN*/A3*/IOR + /P300IN*A3*/A2*/A1
; MOD_CTRL is active HIGH
MOD_CTRL = ACK_HALT * /BRDW * A3 * A2 * A1 * /IOW
; RAM_ACCESS is active HIGH
RAM_ACCESS = ACK_HALT * /P300IN * A3 * /A2 * A1
IO_16 = GND
IO_16.TRST = /P300IN
; enable 16-bit transfers
; LATCH_MOD is active HIGH
LATCH_MOD = /BRDW * /A3 * A2 * A1
; LATCH_ADD is active HIGH
LATCH_ADD = /BRDW * A3 * A2 * /A1
;----------------------------------- Simulation Segment ------------
SIMULATION
TRACE_ON A9 A8 A7 A6 A5 A4 IOR /IOW /BRDW /PLS_EN MOD_CTRL RAM_ACCESS IO_16 LATCH_MOD LATCH_ADD ACK_HALT /P300 /P300IN
SETF /A9 /A8 /A7 /A6 /A5 /A4 /A3 /A2 /A1 IOR IOW /ACK_HALT /P300IN
SETF /IOW ; test P300 doesn't respond
SETF IOW /IOR ; test P300 doesn't respond
SETF IOR
SETF A9 A8 /A7 /A6 /A5 /A4 /IOR /P300IN
SETF A1
SETF A2 /A1
SETF A1 ; read mff0-3
SETF IOR /IOW ; test P300 and BRDW
SETF /A3 A2 A1 ; test Latch Module No
SETF IOW A3 A2 A1 ; MOD-CTRL not active until ACK_HALT
SETF ACK_HALT /IOW
SETF IOW /ACK_HALT
SETF A3 /A2 A1 ; check RAM_ACCESS
SETF ACK_HALT /IOW
SETF /ACK_HALT IOW
SETF ACK_HALT /IOR ; check READ and WRITE to RAM
SETF IOR P300IN
SETF /A3 A2 A1
SETF /ACK_HALT /P300IN
SETF IOW
SETF /A3 A2 A1 /IOW ; check LATCH_MOD
SETF IOW
SETF A3 A2 /A1
SETF /IOW ; check LATCH_ADD
SETF /A3 /A2 /A1 ; shouldn't happen normally
TRACE_OFF
;-------------------------------------------------------------------
FPGA
Example FPGA code. A solution which is too fancy for my 6502.
We are all getting older and electronics smaller. It’s hard to see if your soldering blobs are okay! Those blobs can reflect the light in a way that it’s not visible anymore to check them.
So i took Bigreds advice, and bought a G1200 Microscope. It’s a cheap but helpfull little gadget.
1-1200 times zoom
7inch screen (720p)
SDcard
Lipo battery
Recording on micro sdcard in 12 mega pixels pictures and 1080P Video. (even got a timer)
Focus button, and extra lights (There is a light source in de camera head, which can be adjusted by a knob)
When connecting to your pc, you get 3 options
PC Camera ( … so you can record using your pc with for example OBS)
Mass Storage, to read the SDCARD
Rec_mode ?!? – No idea yet
Below some examples:
Picture example
Video example
SDCard Access:
Access to the sdcard is a little hard. Connecting via Mass Storage is a solution. But i’ve put a little piece of tape to get the card in or out of the slot.
You can view the recordings on the Microscope itself. So i was wondering, can it play any other movie files?
I placed different MOV files on the sdcard, but the microscope skipped the ones i places on the sdcard myself.
I started to look at the metadata, and saw a Codec ID “qt 2016.04.21 (qt )”
mediainfo VID_001.MOV
General
Complete name : VID_001.MOV
Format : MPEG-4
Format profile : QuickTime
Codec ID : qt 2016.04.21 (qt )
File size : 551 MiB
Duration : 12s 0ms
Overall bit rate : 385 Mbps
Encoded date : UTC 1904-01-01 00:00:00
Tagged date : UTC 1904-01-01 00:00:00
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L4.1
Format settings, CABAC : Yes
Format settings, ReFrames : 1 frame
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 12s 0ms
Source duration : 12s 360ms
Bit rate : 14.5 Mbps
Width : 1 920 pixels
Height : 1 080 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 25.000 fps
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.280
Stream size : 20.8 MiB (4%)
Source stream size : 21.3 MiB (4%)
Language : 33
Encoded date : UTC 1904-01-01 00:00:00
Tagged date : UTC 1904-01-01 00:00:00
mdhd_Duration : 12000
Audio
ID : 2
Format : PCM
Format settings, Endianness : Little
Format settings, Sign : Signed
Codec ID : sowt
Duration : 12s 0ms
Source duration : 12s 288ms
Bit rate mode : Constant
Bit rate : 128 Kbps
Channel(s) : 1 channel
Channel positions : Front: C
Sampling rate : 8 000 Hz
Bit depth : 16 bits
Stream size : 188 KiB (0%)
Source stream size : 192 KiB (0%)
Language : 33
Default : Yes
Alternate group : 1
Encoded date : UTC 1904-01-01 00:00:00
Tagged date : UTC 1904-01-01 00:00:00
Tried to change this with ffmpeg, but it would not change the way i want.
ffmpeg -i VID_002.MOV -c copy -map 0 -brand 'qt 2016.04.21 (qt )' VID_007.MOV
mediainfo VID_007.MOV
General
Complete name : VID_007.MOV
Format : MPEG-4
Format profile : QuickTime
Codec ID : qt 0000.02 (qt ) <--------------- nope
Header of the movie clip maybe i have to look into this … later
I want to make a new clock module using a bare ATmega328 running on a 16mhz crystal. This to provide a clock for my 6502 computer.
Using a display and a rotary encoder I want to create a clock module which generates a 50/50 duty cycle clock 1Hz – 1 MHz.
Input module for my 6502 will be 5 buttons. (For now) that’s what’s left on the VIA on port A. (Rest is used by the display). The display i’m going to place directly on the bus. But I already ordered a second VIA. Matrix keyboard will be next. Then I will use the buttons in the picture for shift/alternate buttons. Because I’ll need about 25 keys. (See other posts) . I’ll probably end up making that one myself.
I found examples like this, rest i have to think of myself
{funny story] In 2019 i wanted to make a simple probe, which could detect 0 or 1 or a pulse. I wanted to make this on a little print using wirewrap wires and IC sockets. (I still have the tool which i used in the 90s.) When going to a well-known electronics shop in Den Hague. A great shop to get all kinds of oldskool electronics. But i’m getting ahead of the story. This shop has a lot of components for all kinds of electronics. New and what it looked like de-soldered component from boards or bought from old going-out-of-business shops or factories. Stuff you needed for 60s equipment. Well i was at the counter, asking a old guy. “Do you have wire-wrap wire” He said: ” No that’s old skool” …. {/funny story]
Latest wirewrap only a few years agoFrontToolsIn front the wirewrap sockets, I even had ZIF sockets (at the back) with long pins for wirewrapping.Ugly back from print
The wirewrap tool has a cable stripper. After stripping you would put a short part in the tool, place the tool over a IC pin and turning would wrap the wire on the pins. You could stack multiple connections on one pin. Removing could be done by turning the tool counterclockwise. Sometimes you had to remove the one closest to the print, replacing all wires. (Or cut the wrong/not needed wire and leave it in place … )
I’m thinking of moving my breadboard 6502 to a wirewrapped version. All my old boards are gone .. before i got a digital camera .. 🙁
Flashing ROMs .. (eeproms). It used to be a pain in the *$$. Burning took a looong time. But clearing one with UV took .. 20 minutes or so. Using one of these:
Altered clock module
Changed button press
Dipswitches for more speed control (red .. upper left)
Changed Rom/Ram
Changed addressing
Added RAM
ZIF Socket for ROM
VIC 6522
Fixed clock
Added buttons for interrupt
Display
Display works now
To test: Create Address logic to access display without VIA Can work, but not at high speed clock. Stays behind VIA
To buy: st7920 lcd 128×64
Generic improvements
Rewired most parts, using color codes (Blue data, Yellow Address and so on)
Added leds on data and address bus using ULN2803 darlington arrays
100nF Decoupling capacitors on the power rails
To do’s or ‘have to look into’s’
For sound i planned to use a General Instrument AY-3-8910, it is somewhere in my Lab, i know it is. I saved this chip and a SID for my Amiga addon soundcard. Where are my plans for the simple v1 setup? (FOUND IT)
I have to start writing rom functions for display usage. Like JSR $ff00 – Clear screen subroutine .. etc
I’m scraping information from websites, to get started on my clock controller. ATmega328 with ssd1306 display and rotary encoder/dip switches
Notes about the movie: Left side is Arduino IDE monitor reading Addressbus and Databus. (I’m going to try to rewrite this to realtime disassemble) Resetting system. Stepping CPU with manual clock pulses. Start vector being read at $FFFC/$FFFD. Program being run from $8000. Set clock on automatic ( ~ about 150 Hz ) Last opcodes you see a JMP loop 4C 2F 80, that is JMP $802F Display enlarged on video, was not visible on movie i took on mobile. (Wrong angle?)
Breadboard overview
Clock module
Reset module + Crystal
CPU + nmi/int buttons
RAM and ROM
Address decode + Bus divide
Addres/Data bus leds
6522 VIA + Display
2nd via + Buttons
?
(sound board)
TIL: 6502 can run without ram only rom,expect when using JSR … which uses a program stack in RAM
After a whole day soldering yesterday, ending up with a wire mess. Which didn’t work at the end…
Starting measuring some things, and create some test sketches (led blinky tests) I found out that the main problem was not having the red switches connected to GND. Blue switches where upside down, this was a easy fix. Because these are ON-ON switches, and where already connected to a common line. Then a mixup between D0 and D6 (wires crossed) And it is working! Made some lines and lettering on the frontplate after some playing around.
The Altair 8800 is a microcomputer designed in 1974 by MITS and based on the Intel 8080CPU. Interest grew quickly after it was featured on the cover of the January 1975 issue of Popular Electronics and was sold by mail order through advertisements there, in Radio-Electronics, and in other hobbyist magazines.
(picture from wikipedia)
UPDATE: 20220804 – Added Octal sheet
I alway loved the simple setup of this computer. There was no screen and no keyboard. Only later additions to the machine provided these.
One explanation of the Altair name, is that the name was inspired by Star Trek episode “Amok Time“, where the Enterprise crew went to Altair (Six).
There are only a few differences between the used 8080 CPU and the 8085 CPU of a machine i learned machinecode on.
See : https://www.henriaanstoot.nl/1989/01/01/8085-machinecode-at-school/
So for a really long time i wanted to have a Altair alike machine. There are do it yourself kits for sale. Which look like perfect relica’s and there are virtual machines and emulators. But i wanted to have the feeling of throwing the switches. You can find a emulator here (https://s2js.com/altair/)
So i bought the components, a poker case which can hold the machine. And started building today.
The backend is a arduino based emulator, but with real leds and switches! (https://create.arduino.cc/projecthub/david-hansel/arduino-altair-8800-simulator-3594a6)
Components and pokercaseDrillingFirst looks
Next to do:
Fix plate into case
Solder a LOT of wires and components!
Shall i get rid off the transitors and use darlington arrays?
Put lettering on the aluminium plate : Functions and Bus information.
Build a power connector in the case
And then … programming 🙂
UPDATE: 20220804 – Added Octal sheet
The Altair is a octal based machine, but i couldn’t find a opcode list in Octal. So i generated one. When entering a MOV D,M instruction for example, you have to enter x 0 1 0 1 0 1 1 0 using the switches Thats 126 in octal but most tables are in hex ( MOV D,M is 56, which is 0101 0110 but not that clear on the switches)
Opcode (oct)
Instruction
function
size
flags
Opcode
000
NOP
1
0x00
001
LXI B,D16
B <- byte 3, C <- byte 2
3
0x01
002
STAX B
(BC) <- A
1
0x02
003
INX B
BC <- BC+1
1
0x03
004
INR B
B <- B+1
1
Z, S, P, AC
0x04
005
DCR B
B <- B-1
1
Z, S, P, AC
0x05
006
MVI B, D8
B <- byte 2
2
0x06
007
RLC
A = A << 1; bit 0 = prev bit 7; CY = prev bit 7
1
CY
0x07
010
–
0x08
011
DAD B
HL = HL + BC
1
CY
0x09
012
LDAX B
A <- (BC)
1
0x0a
013
DCX B
BC = BC-1
1
0x0b
014
INR C
C <- C+1
1
Z, S, P, AC
0x0c
015
DCR C
C <-C-1
1
Z, S, P, AC
0x0d
016
MVI C,D8
C <- byte 2
2
0x0e
017
RRC
A = A >> 1; bit 7 = prev bit 0; CY = prev bit 0
1
CY
0x0f
020
–
0x10
021
LXI D,D16
D <- byte 3, E <- byte 2
3
0x11
022
STAX D
(DE) <- A
1
0x12
023
INX D
DE <- DE + 1
1
0x13
024
INR D
D <- D+1
1
Z, S, P, AC
0x14
025
DCR D
D <- D-1
1
Z, S, P, AC
0x15
026
MVI D, D8
D <- byte 2
2
0x16
027
RAL
A = A << 1; bit 0 = prev CY; CY = prev bit 7
1
CY
0x17
030
–
0x18
031
DAD D
HL = HL + DE
1
CY
0x19
032
LDAX D
A <- (DE)
1
0x1a
033
DCX D
DE = DE-1
1
0x1b
034
INR E
E <-E+1
1
Z, S, P, AC
0x1c
035
DCR E
E <- E-1
1
Z, S, P, AC
0x1d
036
MVI E,D8
E <- byte 2
2
0x1e
037
RAR
A = A >> 1; bit 7 = prev bit 7; CY = prev bit 0
1
CY
0x1f
040
–
0x20
041
LXI H,D16
H <- byte 3, L <- byte 2
3
0x21
042
SHLD adr
(adr) <-L; (adr+1)<-H
3
0x22
043
INX H
HL <- HL + 1
1
0x23
044
INR H
H <- H+1
1
Z, S, P, AC
0x24
045
DCR H
H <- H-1
1
Z, S, P, AC
0x25
046
MVI H,D8
H <- byte 2
2
0x26
047
DAA
special
1
0x27
050
–
0x28
051
DAD H
HL = HL + HI
1
CY
0x29
052
LHLD adr
L <- (adr); H<-(adr+1)
3
0x2a
053
DCX H
HL = HL-1
1
0x2b
054
INR L
L <- L+1
1
Z, S, P, AC
0x2c
055
DCR L
L <- L-1
1
Z, S, P, AC
0x2d
056
MVI L, D8
L <- byte 2
2
0x2e
057
CMA
A <- !A
1
0x2f
060
–
0x30
061
LXI SP, D16
SP.hi <- byte 3, SP.lo <- byte 2
3
0x31
062
STA adr
(adr) <- A
3
0x32
063
INX SP
SP = SP + 1
1
0x33
064
INR M
(HL) <- (HL)+1
1
Z, S, P, AC
0x34
065
DCR M
(HL) <- (HL)-1
1
Z, S, P, AC
0x35
066
MVI M,D8
(HL) <- byte 2
2
0x36
067
STC
CY = 1
1
CY
0x37
070
–
0x38
071
DAD SP
HL = HL + SP
1
CY
0x39
072
LDA adr
A <- (adr)
3
0x3a
073
DCX SP
SP = SP-1
1
0x3b
074
INR A
A <- A+1
1
Z, S, P, AC
0x3c
075
DCR A
A <- A-1
1
Z, S, P, AC
0x3d
076
MVI A,D8
A <- byte 2
2
0x3e
077
CMC
CY=!CY
1
CY
0x3f
100
MOV B,B
B <- B
1
0x40
101
MOV B,C
B <- C
1
0x41
102
MOV B,D
B <- D
1
0x42
103
MOV B,E
B <- E
1
0x43
104
MOV B,H
B <- H
1
0x44
105
MOV B,L
B <- L
1
0x45
106
MOV B,M
B <- (HL)
1
0x46
107
MOV B,A
B <- A
1
0x47
110
MOV C,B
C <- B
1
0x48
111
MOV C,C
C <- C
1
0x49
112
MOV C,D
C <- D
1
0x4a
113
MOV C,E
C <- E
1
0x4b
114
MOV C,H
C <- H
1
0x4c
115
MOV C,L
C <- L
1
0x4d
116
MOV C,M
C <- (HL)
1
0x4e
117
MOV C,A
C <- A
1
0x4f
120
MOV D,B
D <- B
1
0x50
121
MOV D,C
D <- C
1
0x51
122
MOV D,D
D <- D
1
0x52
123
MOV D,E
D <- E
1
0x53
124
MOV D,H
D <- H
1
0x54
125
MOV D,L
D <- L
1
0x55
126
MOV D,M
D <- (HL)
1
0x56
127
MOV D,A
D <- A
1
0x57
130
MOV E,B
E <- B
1
0x58
131
MOV E,C
E <- C
1
0x59
132
MOV E,D
E <- D
1
0x5a
133
MOV E,E
E <- E
1
0x5b
134
MOV E,H
E <- H
1
0x5c
135
MOV E,L
E <- L
1
0x5d
136
MOV E,M
E <- (HL)
1
0x5e
137
MOV E,A
E <- A
1
0x5f
140
MOV H,B
H <- B
1
0x60
141
MOV H,C
H <- C
1
0x61
142
MOV H,D
H <- D
1
0x62
143
MOV H,E
H <- E
1
0x63
144
MOV H,H
H <- H
1
0x64
145
MOV H,L
H <- L
1
0x65
146
MOV H,M
H <- (HL)
1
0x66
147
MOV H,A
H <- A
1
0x67
150
MOV L,B
L <- B
1
0x68
151
MOV L,C
L <- C
1
0x69
152
MOV L,D
L <- D
1
0x6a
153
MOV L,E
L <- E
1
0x6b
154
MOV L,H
L <- H
1
0x6c
155
MOV L,L
L <- L
1
0x6d
156
MOV L,M
L <- (HL)
1
0x6e
157
MOV L,A
L <- A
1
0x6f
160
MOV M,B
(HL) <- B
1
0x70
161
MOV M,C
(HL) <- C
1
0x71
162
MOV M,D
(HL) <- D
1
0x72
163
MOV M,E
(HL) <- E
1
0x73
164
MOV M,H
(HL) <- H
1
0x74
165
MOV M,L
(HL) <- L
1
0x75
166
HLT
special
1
0x76
167
MOV M,A
(HL) <- A
1
0x77
170
MOV A,B
A <- B
1
0x78
171
MOV A,C
A <- C
1
0x79
172
MOV A,D
A <- D
1
0x7a
173
MOV A,E
A <- E
1
0x7b
174
MOV A,H
A <- H
1
0x7c
175
MOV A,L
A <- L
1
0x7d
176
MOV A,M
A <- (HL)
1
0x7e
177
MOV A,A
A <- A
1
0x7f
200
ADD B
A <- A + B
1
Z, S, P, CY, AC
0x80
201
ADD C
A <- A + C
1
Z, S, P, CY, AC
0x81
202
ADD D
A <- A + D
1
Z, S, P, CY, AC
0x82
203
ADD E
A <- A + E
1
Z, S, P, CY, AC
0x83
204
ADD H
A <- A + H
1
Z, S, P, CY, AC
0x84
205
ADD L
A <- A + L
1
Z, S, P, CY, AC
0x85
206
ADD M
A <- A + (HL)
1
Z, S, P, CY, AC
0x86
207
ADD A
A <- A + A
1
Z, S, P, CY, AC
0x87
210
ADC B
A <- A + B + CY
1
Z, S, P, CY, AC
0x88
211
ADC C
A <- A + C + CY
1
Z, S, P, CY, AC
0x89
212
ADC D
A <- A + D + CY
1
Z, S, P, CY, AC
0x8a
213
ADC E
A <- A + E + CY
1
Z, S, P, CY, AC
0x8b
214
ADC H
A <- A + H + CY
1
Z, S, P, CY, AC
0x8c
215
ADC L
A <- A + L + CY
1
Z, S, P, CY, AC
0x8d
216
ADC M
A <- A + (HL) + CY
1
Z, S, P, CY, AC
0x8e
217
ADC A
A <- A + A + CY
1
Z, S, P, CY, AC
0x8f
220
SUB B
A <- A – B
1
Z, S, P, CY, AC
0x90
221
SUB C
A <- A – C
1
Z, S, P, CY, AC
0x91
222
SUB D
A <- A + D
1
Z, S, P, CY, AC
0x92
223
SUB E
A <- A – E
1
Z, S, P, CY, AC
0x93
224
SUB H
A <- A + H
1
Z, S, P, CY, AC
0x94
225
SUB L
A <- A – L
1
Z, S, P, CY, AC
0x95
226
SUB M
A <- A + (HL)
1
Z, S, P, CY, AC
0x96
227
SUB A
A <- A – A
1
Z, S, P, CY, AC
0x97
230
SBB B
A <- A – B – CY
1
Z, S, P, CY, AC
0x98
231
SBB C
A <- A – C – CY
1
Z, S, P, CY, AC
0x99
232
SBB D
A <- A – D – CY
1
Z, S, P, CY, AC
0x9a
233
SBB E
A <- A – E – CY
1
Z, S, P, CY, AC
0x9b
234
SBB H
A <- A – H – CY
1
Z, S, P, CY, AC
0x9c
235
SBB L
A <- A – L – CY
1
Z, S, P, CY, AC
0x9d
236
SBB M
A <- A – (HL) – CY
1
Z, S, P, CY, AC
0x9e
237
SBB A
A <- A – A – CY
1
Z, S, P, CY, AC
0x9f
240
ANA B
A <- A & B
1
Z, S, P, CY, AC
0xa0
241
ANA C
A <- A & C
1
Z, S, P, CY, AC
0xa1
242
ANA D
A <- A & D
1
Z, S, P, CY, AC
0xa2
243
ANA E
A <- A & E
1
Z, S, P, CY, AC
0xa3
244
ANA H
A <- A & H
1
Z, S, P, CY, AC
0xa4
245
ANA L
A <- A & L
1
Z, S, P, CY, AC
0xa5
246
ANA M
A <- A & (HL)
1
Z, S, P, CY, AC
0xa6
247
ANA A
A <- A & A
1
Z, S, P, CY, AC
0xa7
250
XRA B
A <- A ^ B
1
Z, S, P, CY, AC
0xa8
251
XRA C
A <- A ^ C
1
Z, S, P, CY, AC
0xa9
252
XRA D
A <- A ^ D
1
Z, S, P, CY, AC
0xaa
253
XRA E
A <- A ^ E
1
Z, S, P, CY, AC
0xab
254
XRA H
A <- A ^ H
1
Z, S, P, CY, AC
0xac
255
XRA L
A <- A ^ L
1
Z, S, P, CY, AC
0xad
256
XRA M
A <- A ^ (HL)
1
Z, S, P, CY, AC
0xae
257
XRA A
A <- A ^ A
1
Z, S, P, CY, AC
0xaf
260
ORA B
A <- A | B
1
Z, S, P, CY, AC
0xb0
261
ORA C
A <- A | C
1
Z, S, P, CY, AC
0xb1
262
ORA D
A <- A | D
1
Z, S, P, CY, AC
0xb2
263
ORA E
A <- A | E
1
Z, S, P, CY, AC
0xb3
264
ORA H
A <- A | H
1
Z, S, P, CY, AC
0xb4
265
ORA L
A <- A | L
1
Z, S, P, CY, AC
0xb5
266
ORA M
A <- A | (HL)
1
Z, S, P, CY, AC
0xb6
267
ORA A
A <- A | A
1
Z, S, P, CY, AC
0xb7
270
CMP B
A – B
1
Z, S, P, CY, AC
0xb8
271
CMP C
A – C
1
Z, S, P, CY, AC
0xb9
272
CMP D
A – D
1
Z, S, P, CY, AC
0xba
273
CMP E
A – E
1
Z, S, P, CY, AC
0xbb
274
CMP H
A – H
1
Z, S, P, CY, AC
0xbc
275
CMP L
A – L
1
Z, S, P, CY, AC
0xbd
276
CMP M
A – (HL)
1
Z, S, P, CY, AC
0xbe
277
CMP A
A – A
1
Z, S, P, CY, AC
0xbf
300
RNZ
if NZ, RET
1
0xc0
301
POP B
C <- (sp); B <- (sp+1); sp <- sp+2
1
0xc1
302
JNZ adr
if NZ, PC <- adr
3
0xc2
303
JMP adr
PC <= adr
3
0xc3
304
CNZ adr
if NZ, CALL adr
3
0xc4
305
PUSH B
(sp-2)<-C; (sp-1)<-B; sp <- sp – 2
1
0xc5
306
ADI D8
A <- A + byte
2
Z, S, P, CY, AC
0xc6
307
RST 0
CALL $0
1
0xc7
310
RZ
if Z, RET
1
0xc8
311
RET
PC.lo <- (sp); PC.hi<-(sp+1); SP <- SP+2
1
0xc9
312
JZ adr
if Z, PC <- adr
3
0xca
313
–
0xcb
314
CZ adr
if Z, CALL adr
3
0xcc
315
CALL adr
(SP-1)<-PC.hi;(SP-2)<-PC.lo;SP<-SP-2;PC=adr
3
0xcd
316
ACI D8
A <- A + data + CY
2
Z, S, P, CY, AC
0xce
317
RST 1
CALL $8
1
0xcf
320
RNC
if NCY, RET
1
0xd0
321
POP D
E <- (sp); D <- (sp+1); sp <- sp+2
1
0xd1
322
JNC adr
if NCY, PC<-adr
3
0xd2
323
OUT D8
special
2
0xd3
324
CNC adr
if NCY, CALL adr
3
0xd4
325
PUSH D
(sp-2)<-E; (sp-1)<-D; sp <- sp – 2
1
0xd5
326
SUI D8
A <- A – data
2
Z, S, P, CY, AC
0xd6
327
RST 2
CALL $10
1
0xd7
330
RC
if CY, RET
1
0xd8
331
–
0xd9
332
JC adr
if CY, PC<-adr
3
0xda
333
IN D8
special
2
0xdb
334
CC adr
if CY, CALL adr
3
0xdc
335
–
0xdd
336
SBI D8
A <- A – data – CY
2
Z, S, P, CY, AC
0xde
337
RST 3
CALL $18
1
0xdf
340
RPO
if PO, RET
1
0xe0
341
POP H
L <- (sp); H <- (sp+1); sp <- sp+2
1
0xe1
342
JPO adr
if PO, PC <- adr
3
0xe2
343
XTHL
L <-> (SP); H <-> (SP+1)
1
0xe3
344
CPO adr
if PO, CALL adr
3
0xe4
345
PUSH H
(sp-2)<-L; (sp-1)<-H; sp <- sp – 2
1
0xe5
346
ANI D8
A <- A & data
2
Z, S, P, CY, AC
0xe6
347
RST 4
CALL $20
1
0xe7
350
RPE
if PE, RET
1
0xe8
351
PCHL
PC.hi <- H; PC.lo <- L
1
0xe9
352
JPE adr
if PE, PC <- adr
3
0xea
353
XCHG
H <-> D; L <-> E
1
0xeb
354
CPE adr
if PE, CALL adr
3
0xec
355
–
0xed
356
XRI D8
A <- A ^ data
2
Z, S, P, CY, AC
0xee
357
RST 5
CALL $28
1
0xef
360
RP
if P, RET
1
0xf0
361
POP PSW
flags <- (sp); A <- (sp+1); sp <- sp+2
1
0xf1
362
JP adr
if P=1 PC <- adr
3
0xf2
363
DI
special
1
0xf3
364
CP adr
if P, PC <- adr
3
0xf4
365
PUSH PSW
(sp-2)<-flags; (sp-1)<-A; sp <- sp – 2
1
0xf5
366
ORI D8
A <- A | data
2
Z, S, P, CY, AC
0xf6
367
RST 6
CALL $30
1
0xf7
370
RM
if M, RET
1
0xf8
371
SPHL
SP=HL
1
0xf9
372
JM adr
if M, PC <- adr
3
0xfa
373
EI
special
1
0xfb
374
CM adr
if M, CALL adr
3
0xfc
375
–
0xfd
376
CPI D8
A – data
2
Z, S, P, CY, AC
0xfe
377
RST 7
CALL $38
1
0xff
"If something is worth doing, it's worth overdoing."