I want to make a new clock module using a bare ATmega328 running on a 16mhz crystal. This to provide a clock for my 6502 computer.
Using a display and a rotary encoder I want to create a clock module which generates a 50/50 duty cycle clock 1Hz – 1 MHz.
Input module for my 6502 will be 5 buttons. (For now) that’s what’s left on the VIA on port A. (Rest is used by the display). The display i’m going to place directly on the bus. But I already ordered a second VIA. Matrix keyboard will be next. Then I will use the buttons in the picture for shift/alternate buttons. Because I’ll need about 25 keys. (See other posts) . I’ll probably end up making that one myself.
I found examples like this, rest i have to think of myself
{funny story] In 2019 i wanted to make a simple probe, which could detect 0 or 1 or a pulse. I wanted to make this on a little print using wirewrap wires and IC sockets. (I still have the tool which i used in the 90s.) When going to a well-known electronics shop in Den Hague. A great shop to get all kinds of oldskool electronics. But i’m getting ahead of the story. This shop has a lot of components for all kinds of electronics. New and what it looked like de-soldered component from boards or bought from old going-out-of-business shops or factories. Stuff you needed for 60s equipment. Well i was at the counter, asking a old guy. “Do you have wire-wrap wire” He said: ” No that’s old skool” …. {/funny story]
Latest wirewrap only a few years agoFrontToolsIn front the wirewrap sockets, I even had ZIF sockets (at the back) with long pins for wirewrapping.Ugly back from print
The wirewrap tool has a cable stripper. After stripping you would put a short part in the tool, place the tool over a IC pin and turning would wrap the wire on the pins. You could stack multiple connections on one pin. Removing could be done by turning the tool counterclockwise. Sometimes you had to remove the one closest to the print, replacing all wires. (Or cut the wrong/not needed wire and leave it in place … )
I’m thinking of moving my breadboard 6502 to a wirewrapped version. All my old boards are gone .. before i got a digital camera .. 🙁
Flashing ROMs .. (eeproms). It used to be a pain in the *$$. Burning took a looong time. But clearing one with UV took .. 20 minutes or so. Using one of these:
Altered clock module
Changed button press
Dipswitches for more speed control (red .. upper left)
Changed Rom/Ram
Changed addressing
Added RAM
ZIF Socket for ROM
VIC 6522
Fixed clock
Added buttons for interrupt
Display
Display works now
To test: Create Address logic to access display without VIA Can work, but not at high speed clock. Stays behind VIA
To buy: st7920 lcd 128×64
Generic improvements
Rewired most parts, using color codes (Blue data, Yellow Address and so on)
Added leds on data and address bus using ULN2803 darlington arrays
100nF Decoupling capacitors on the power rails
To do’s or ‘have to look into’s’
For sound i planned to use a General Instrument AY-3-8910, it is somewhere in my Lab, i know it is. I saved this chip and a SID for my Amiga addon soundcard. Where are my plans for the simple v1 setup? (FOUND IT)
I have to start writing rom functions for display usage. Like JSR $ff00 – Clear screen subroutine .. etc
I’m scraping information from websites, to get started on my clock controller. ATmega328 with ssd1306 display and rotary encoder/dip switches
Notes about the movie: Left side is Arduino IDE monitor reading Addressbus and Databus. (I’m going to try to rewrite this to realtime disassemble) Resetting system. Stepping CPU with manual clock pulses. Start vector being read at $FFFC/$FFFD. Program being run from $8000. Set clock on automatic ( ~ about 150 Hz ) Last opcodes you see a JMP loop 4C 2F 80, that is JMP $802F Display enlarged on video, was not visible on movie i took on mobile. (Wrong angle?)
Breadboard overview
Clock module
Reset module + Crystal
CPU + nmi/int buttons
RAM and ROM
Address decode + Bus divide
Addres/Data bus leds
6522 VIA + Display
2nd via + Buttons
?
(sound board)
TIL: 6502 can run without ram only rom,expect when using JSR … which uses a program stack in RAM
Cartridge printEeproms 8k and 32k (also for 6502 project)Eeprom programmer
I’ve got the tools and Bigred made me enthusiastic again. My goal is to make a C64 Cartridge from a PRG. And Not any program, it is the 8085 Emulator from Sepp.
Serveral problems i have to ‘fix’
The program is 17K, Cartridges can only be 16K. So i have to use 2x 8K and compress the data. This means it have to be uncompressed at start time. ( I was thinking of using exomiser for this )
Program starts normally at $0820 and probably is not optimised to run anywhere else. So a starting routine has to copy the program from cartridge memory to the correct location
Luckily i have the source! How cool is that
For version 4.73 it states : Starting at $0820 .. but my hexdump is off by one??!?
00000020 00 20 ec starts with 00 at $0020 .. and not 20 ?!?!
Tools used until now:
Vice – C64 Emulator x64 -cartcrt 8085.crt
c1541 – Linux disk tool for C64 images. Used this to extract the 8085emulator PRG
prg2crt.py – a convertor from PRG to a cartrid file which can be used by Vice python2 prg2crt.py 8085.prg 8085.crt
minipro – eeprom programming tool for Linux minipro -p AT28C64 -w /tmp/test.bin
cartconv (tool from vice to convert crt <-> bin) cartconv -t normal -i test.bin -n ‘my cart’ -o test.crt
xa – Cross assembler 65xx/R65C02/65816
ACME – the ACME Crossassembler for Multiple Environments
Memory Map C64 – source c64-wiki.com
Card Low starts at $8000, so that’s the place where those roms are going to be. To place on this address:
Copy routine : from ($8000 + this copy routine) to $0820 When to decompress?? jmp routine to $0820
A cartridge file >16K and with his emulation headers seems to work??!
Also nice: Magic Desk Cartridge Generator V3.0
UPDATE: 20220811
exomizer sfx 0x0820 8085.prg -o data.exo # Compress and start at 0x0820
xa frame.asm -o frame.bin # Add code and write binary
x64 --cart16 frame.bin # Test cartridge with Vice
frame.asm
;----------------------------------------------------------
; example usage
; xa frame.asm -o frame.bin
; cartconv -t normal -i frame.bin -n 'my cart' -o frame.crt
; x64 -cartcrt frame.crt
;----------------------------------------------------------
;no load-adress for bin-file, so no header here
*=$8000
.word launcher ;cold start
.word launcher ;warm start
.byte $c3 ;c
.byte $c2 ;b
.byte $cd ;m
.byte $38 ;8
.byte $30 ;0
launcher
stx $d016
jsr $fda3 ;prepare irq
jsr $fd50 ;init memory
jsr $fd15 ;init i/o
jsr $ff5b ;init video
;make sure this sets up everything you need,
;the calls above are probably sufficient
ldx #$fb
txs
;set up starting code outside of cartridge-area
move_starter
ldx #(starter_end-starter_start)
loop1
lda starter_start,x
sta $100,x
dex
bpl loop1
jmp $100
;---------------------------------
starter_start
ldx #$40 ;64 pages = 256 * 64 = 16384 Bytes
ldy #0
loop
src
lda exomized_data,y
dst
sta $801,y
iny
bne loop
inc src+2-starter_start+$100
inc dst+2-starter_start+$100
dex
bpl loop
;make sure settings for $01 and IRQ etc are correct for your code
;remember THIS table from AAY64:
; Bit+-------------+-----------+------------+
; 210| $8000-$BFFF |$D000-$DFFF|$E000-$FFFF |
; +---+---+-------------+-----------+------------+
; | 7 |111| Cart.+Basic | I/O | Kernal ROM |
; +---+---+-------------+-----------+------------+
; | 6 |110| RAM | I/O | Kernal ROM |
; +---+---+-------------+-----------+------------+
; | 5 |101| RAM | I/O | RAM |
; +---+---+-------------+-----------+------------+
; | 4 |100| RAM | RAM | RAM |
; +---+---+-------------+-----------+------------+
; | 3 |011| Cart.+Basic | Char. ROM | Kernal ROM |
; +---+---+-------------+-----------+------------+
; | 2 |010| RAM | Char. ROM | Kernal ROM |
; +---+---+-------------+-----------+------------+
; | 1 |001| RAM | Char. ROM | RAM |
; +---+---+-------------+-----------+------------+
; | 0 |000| RAM | RAM | RAM |
; +---+---+-------------+-----------+------------+
lda #$35 ;cart is always on instead of BASIC unless it can be switched off via software
sta $01
jmp $80d ;for exomizer, i.e.
starter_end
;----------------------------------
exomized_data
.bin 2,0,"data.exo"
;syntax for exomizer 2.0.1:
;exomizer sfx sys game.prg -o data.exo
main_file_end
;fill up full $4000 bytes for bin file ($c000-$8000=$4000)
.dsb ($c000-main_file_end),0
Exomiser info
Reading "8085.prg", loading from $0801 to $4CE9.
Crunching from $0801 to $4CE9.
Phase 1: Instrumenting file
-----------------------------
Length of indata: 17640 bytes.
[building.directed.acyclic.graph.building.directed.acyclic.graph.]
Instrumenting file, done.
Phase 2: Calculating encoding
-----------------------------
pass 1: optimizing ..
[finding.shortest.path.finding.shortest.path.finding.shortest.pat]
size 80273.0 bits ~10035 bytes
pass 2: optimizing ..
[finding.shortest.path.finding.shortest.path.finding.shortest.pat]
size 80039.0 bits ~10005 bytes
pass 3: optimizing ..
Calculating encoding, done.
Phase 3: Generating output file
------------------------------
Encoding: 1101112133423160,1122,2010223445667788,032144406789BBCD
Length of crunched data: 10034 bytes.
Crunched data reduced 7606 bytes (43.12%)
Target is self-decrunching C64 executable,
jmp address $0820.
Writing "data.exo" as prg, saving from $0801 to $304C.
Memory layout: |Start |End |
Crunched data | $07E7| $2F18|
Decrunched data | $0801| $4CE9|
Decrunch table | $0334| $03D0|
Decruncher | $00FD| $01C0| and $9F,$A7,$AE,$AF
Decrunch effect writes to $DBE7.
Decruncher: |Enter |During|Exit |
RAM config | $37| $37| $37|
IRQ enabled | 1| 1| 1|
UPDATE:20230126
; CODE COPY FROM http://www.lemon64.com/forum/viewtopic.php?t=60786&sid=2559442c8b963d7aac27cb13b493f372
; Thanks for posting: Richard of TND
; this is for a 16KB cart, using ACME!!
!to "mycart.crt",cart16crt
scr = $0400
DecrunchADDR = 2061 ;SYS 2061 (HEX $080D)
*=$8000
!word launcher
!word launcher
!byte $c3,$c2,$cd,$38,$30 ;CBM 80
launcher
sei
stx $d016
jsr $fda3 ;prepare irq
jsr $fd50 ;input memory
jsr $fd15 ;initialise i/o
jsr $ff5b ;initialise video memory
;For a more professional boot up. Make
;the border and screen black. AFTER
;the video memory, etc has finished.
lda #$00
sta $d020
sta $d021
cli
;Switch off the screen.
lda $d011
and #%11101111
sta $d011
;Move transfer code over to the screen
;memory.
ldx #$00
tloop lda transfer,x
sta scr,x
inx
bne tloop
jmp scr
transfer
ldx #$00
tr1 lda linkedgame,x ;Move from linked address
sta $0801,x ;Direct to BASIC start address
inx
bne tr1
inc scr+4
inc scr+7
lda scr+4
bne transfer
jsr $e453 ;load basic vectors
jsr $e3bf ;init basic ram
ldx #$fb
txs
;Execute the game, by jumping to the
;de-cruncher's start address.
;jmp $0820
jmp DecrunchADDR
;Link crunched game as a PRG file to memory after
;the cartridge build code.
linkedgame
!bin "8085sys.prg",,2
FileSize = *
!if FileSize >$c000 {
!error "FILE SIZE IS TOO BIG TO FIT 16KB CARTRIDGE"
} else {
*=$c000
}
Exomizer:
exomizer sfx sys 8085.prg -o 8085sys.prg
Reading "8085.prg", loading from $0801 to $4CE9.
Crunching from $0801 to $4CE9.
Phase 1: Instrumenting file
-----------------------------
Length of indata: 17640 bytes.
[building.directed.acyclic.graph.building.directed.acyclic.graph.]
Instrumenting file, done.
Phase 2: Calculating encoding
-----------------------------
pass 1: optimizing ..
[finding.shortest.path.finding.shortest.path.finding.shortest.pat]
size 80273.0 bits ~10035 bytes
pass 2: optimizing ..
[finding.shortest.path.finding.shortest.path.finding.shortest.pat]
size 80039.0 bits ~10005 bytes
pass 3: optimizing ..
Calculating encoding, done.
Phase 3: Generating output file
------------------------------
Encoding: 1101112133423160,1122,2010223445667788,032144406789BBCD
Length of crunched data: 10034 bytes.
Crunched data reduced 7606 bytes (43.12%)
Target is self-decrunching C64 executable,
jmp address $0820.
Writing "8085sys.prg" as prg, saving from $0801 to $304C.
Memory layout: |Start |End |
Crunched data | $07E7| $2F18|
Decrunched data | $0801| $4CE9|
Decrunch table | $0334| $03D0|
Decruncher | $00FD| $01C0| and $9F,$A7,$AE,$AF
Decrunch effect writes to $DBE7.
Decruncher: |Enter |During|Exit |
RAM config | $37| $37| $37|
IRQ enabled | 1| 1| 1|
exomizer sfx $\0801 8085.prg -o 8085out.prg
Reading "8085.prg", loading from $0801 to $4CE9.
Crunching from $0801 to $4CE9.
Phase 1: Instrumenting file
-----------------------------
Length of indata: 17640 bytes.
[building.directed.acyclic.graph.building.directed.acyclic.graph.]
Instrumenting file, done.
Phase 2: Calculating encoding
-----------------------------
pass 1: optimizing ..
[finding.shortest.path.finding.shortest.path.finding.shortest.pat]
size 80273.0 bits ~10035 bytes
pass 2: optimizing ..
[finding.shortest.path.finding.shortest.path.finding.shortest.pat]
size 80039.0 bits ~10005 bytes
pass 3: optimizing ..
Calculating encoding, done.
Phase 3: Generating output file
------------------------------
Encoding: 1101112133423160,1122,2010223445667788,032144406789BBCD
Length of crunched data: 10034 bytes.
Crunched data reduced 7606 bytes (43.12%)
Target is self-decrunching C64 executable,
jmp address $0801.
Writing "8085out.prg" as prg, saving from $0801 to $304C.
Memory layout: |Start |End |
Crunched data | $07E7| $2F18|
Decrunched data | $0801| $4CE9|
Decrunch table | $0334| $03D0|
Decruncher | $00FD| $01C0| and $9F,$A7,$AE,$AF
Decrunch effect writes to $DBE7.
Decruncher: |Enter |During|Exit |
RAM config | $37| $37| $37|
IRQ enabled | 1| 1| 1|
This looks okay: (monitor in vice)
Attaching crt in vice
Maybe one of these problems:
1) you CAN NOT use BASIC routines when a cart is inserted (without weird tricks, i.e.
storing BASIC routines on cart etc)
2) you need to be careful about $01 as you may map in ROM at $8000 without expecting it.
Please refer to this if in doubt:
http://unusedino.de/ec64/technical/aay/c64/memcfg.html
[3] You should also be careful about the usage of KERNAL routines as some of them
sweep across BASIC-code as well!
After a whole day soldering yesterday, ending up with a wire mess. Which didn’t work at the end…
Starting measuring some things, and create some test sketches (led blinky tests) I found out that the main problem was not having the red switches connected to GND. Blue switches where upside down, this was a easy fix. Because these are ON-ON switches, and where already connected to a common line. Then a mixup between D0 and D6 (wires crossed) And it is working! Made some lines and lettering on the frontplate after some playing around.
The Altair 8800 is a microcomputer designed in 1974 by MITS and based on the Intel 8080CPU. Interest grew quickly after it was featured on the cover of the January 1975 issue of Popular Electronics and was sold by mail order through advertisements there, in Radio-Electronics, and in other hobbyist magazines.
(picture from wikipedia)
UPDATE: 20220804 – Added Octal sheet
I alway loved the simple setup of this computer. There was no screen and no keyboard. Only later additions to the machine provided these.
One explanation of the Altair name, is that the name was inspired by Star Trek episode “Amok Time“, where the Enterprise crew went to Altair (Six).
There are only a few differences between the used 8080 CPU and the 8085 CPU of a machine i learned machinecode on.
See : https://www.henriaanstoot.nl/1989/01/01/8085-machinecode-at-school/
So for a really long time i wanted to have a Altair alike machine. There are do it yourself kits for sale. Which look like perfect relica’s and there are virtual machines and emulators. But i wanted to have the feeling of throwing the switches. You can find a emulator here (https://s2js.com/altair/)
So i bought the components, a poker case which can hold the machine. And started building today.
The backend is a arduino based emulator, but with real leds and switches! (https://create.arduino.cc/projecthub/david-hansel/arduino-altair-8800-simulator-3594a6)
Components and pokercaseDrillingFirst looks
Next to do:
Fix plate into case
Solder a LOT of wires and components!
Shall i get rid off the transitors and use darlington arrays?
Put lettering on the aluminium plate : Functions and Bus information.
Build a power connector in the case
And then … programming 🙂
UPDATE: 20220804 – Added Octal sheet
The Altair is a octal based machine, but i couldn’t find a opcode list in Octal. So i generated one. When entering a MOV D,M instruction for example, you have to enter x 0 1 0 1 0 1 1 0 using the switches Thats 126 in octal but most tables are in hex ( MOV D,M is 56, which is 0101 0110 but not that clear on the switches)
Way back in 2018 i was playing around with i2c and touch.
CAP1188 Multi touch sensor
I remembered that VGA was using i2c to get information from monitors like brand/type and connection information.
I managed to access the cap1188 up to my Laptop via VGA.
2018 Schematic i used to abuse vga …
The final python code i used to play with the variables and playing sound i can’t find. But below is the test code
#!/usr/bin/python
# NOTE: i did a address scan, now i have 3v3 connected to AD, so probably the address is 0x28 !!
import smbus
bus = smbus.SMBus(1) # 0 = /dev/i2c-0 (port I2C0), 1 = /dev/i2c-1 (port I2C1)
DEVICE_ADDRESS = 0x29
DEVICEx = 0x10
DEVICE_REG_MODE1 = 0x00
DEVICE_REG_LEDOUT0 = 0x1d
#Write a single register
bus.write_byte_data(DEVICE_ADDRESS, 0x1f, 0x3F)
#Write an array of registers
#ledout_values = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff]
#bus.write_i2c_block_data(DEVICE_ADDRESS, DEVICE_REG_LEDOUT0, ledout_values)
while True:
print bus.read_byte_data(DEVICE_ADDRESS,0x10), bus.read_byte_data(DEVICE_ADDRESS,0x11) , bus.read_byte_data(DEVICE_ADDRESS,0x12), bus.read_byte_data(DEVICE_ADDRESS,0x13), bus.read_byte_data(DEVICE_ADDRESS,0x14), bus.read_byte_dat
a(DEVICE_ADDRESS,0x15), bus.read_byte_data(DEVICE_ADDRESS,0x16), bus.read_byte_data(DEVICE_ADDRESS,0x17)
Today i connected the cap1188 to a ESP32 and a piezo buzzer.
ESP FuzzahBuzzerCAP1188CAP1188
/*** Based on below library ***/
/*** Changed pins and added sound ***/
/***************************************************
This is a library for the CAP1188 I2C/SPI 8-chan Capacitive Sensor
Designed specifically to work with the CAP1188 sensor from Adafruit
----> https://www.adafruit.com/products/1602
These sensors use I2C/SPI to communicate, 2+ pins are required to
interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, all text above must be included in any redistribution
****************************************************/
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_CAP1188.h>
const int TONE_OUTPUT_PIN = 26;
const int TONE_PWM_CHANNEL = 0;
int freq = 0;
// Reset Pin is used for I2C or SPI
#define CAP1188_RESET 9
// CS pin is used for software or hardware SPI
#define CAP1188_CS 10
// These are defined for software SPI, for hardware SPI, check your
// board's SPI pins in the Arduino documentation
#define CAP1188_MOSI 11
#define CAP1188_MISO 12
#define CAP1188_CLK 13
// For I2C, connect SDA to your Arduino's SDA pin, SCL to SCL pin
// On UNO/Duemilanove/etc, SDA == Analog 4, SCL == Analog 5
// On Leonardo/Micro, SDA == Digital 2, SCL == Digital 3
// On Mega/ADK/Due, SDA == Digital 20, SCL == Digital 21
// Use I2C, no reset pin!
Adafruit_CAP1188 cap = Adafruit_CAP1188();
// Or...Use I2C, with reset pin
//Adafruit_CAP1188 cap = Adafruit_CAP1188(CAP1188_RESET);
// Or... Hardware SPI, CS pin & reset pin
// Adafruit_CAP1188 cap = Adafruit_CAP1188(CAP1188_CS, CAP1188_RESET);
// Or.. Software SPI: clock, miso, mosi, cs, reset
//Adafruit_CAP1188 cap = Adafruit_CAP1188(CAP1188_CLK, CAP1188_MISO, CAP1188_MOSI, CAP1188_CS, CAP1188_RESET);
void setup() {
Serial.begin(9600);
Serial.println("CAP1188 test!");
ledcAttachPin(TONE_OUTPUT_PIN, TONE_PWM_CHANNEL);
// Initialize the sensor, if using i2c you can pass in the i2c address
if (!cap.begin(0x28)){
//if (!cap.begin()) {
Serial.println("CAP1188 not found");
while (1);
}
Serial.println("CAP1188 found!");
}
void loop() {
uint8_t touched = cap.touched();
if (touched == 0) {
// No touch detected
return;
}
for (uint8_t i=0; i<8; i++) {
if (touched & (1 << i)) {
Serial.print(touched); Serial.print("\t");
freq = (i * 100);
ledcWriteTone(TONE_PWM_CHANNEL, freq);
delay(100);
}
}
Serial.println();
delay(50);
}
Finding the right pins or above pinout was the hardest part. The sketch reads the pins binary so value 129 is first and last bit.
Now i have to get the sound sounding a little better and add frequencies and fingersettings to the sketch to get a minimal electronic bagpipe. (V3 it is .. )
The workshop at MCH2022 gave me the idea to make my next PCB not at home, but professionally.
I’m planning to make my 6502 on modular PCB’s when i’ve got the base part working. ( I probably will only make THT (Though Hole Technology) boards instead of smd ) So i’ll probably end up making a few boards, namely:
Power on reset
Clock module
Interconnect with arduino
CPU, memory and ROM
Display
6522 Via
SID chip
Hex keyboard
This power-on reset is based on the original C64 part to reset the CPU when you power the machine on. With my 6502 i have to manually push reset to start booting. (The CPU starts in a unknown state when you power it up, it needs a reset)
MCH2022 is a nonprofit outdoor hacker camp taking place in Zeewolde, the Netherlands, July 22 to 26 2022. The event is organized for and by volunteers from the worldwide hacker community.
Knowledge sharing, technological advancement, experimentation, connecting with your hacker peers and hacking are some of the core values of this event.
MCH2022 is the successor of a string of similar events happening every four years since 1989. These are GHP, HEU, HIP, HAL, WTH, HAR, OHM and SHA.
I’ve bin to several of these big events. Besides these big events are many different smaller events (wannull, ne2000 etc).
First one i’ve been was HIP97. I went with Bigred at that time. I had to get the tickets at that time, he didn’t had a handle at that time. It was Monique who came up with his new nick.
After HIP97 there was HAL2001 WTH2005 and OHM2013 which i was present. HAL2001 the whole ICEcrew was present, WTH a part of them, OHM a few and i was with a few PRUTS friends.
Now i was with my girlfriend, AND with Bigred again! Loads of fun and memories. Had not seen Bigred since a inbetween hacker party at my place. So ’97 and now ’22 .. jeez 25 years!
So MCH, it was great again. Loads of stuff to do and to see. Weather was … okay. Two days where really hot, one day some light rain but a load of wind. Our neighbours tent collapsed, beer tents where reenforced. First campsite with a supermarket! Music stage was awesome, lasers and fire!
I went to a lot of talks, even my girlfriend found some she was interested in.
OpeningAt nightLast time my tapeTinkeringtar cz ourstuff.tgz
This was the last time i’ve brought my “Windows free zone tape” This big roll of tape was used on many occasions. I got this roll somewhere < 2000, I did a search but couldn’t find anything mentioning it on the web. Maybe some archive.org entry?
Starting a Home Computer Museum (which i almost did in the past)
streaming 360 video (going to try this with my Vuze XR Camera)
Non-Euclidean Doom: what happens to a game when pi is not 3.14159… (Really enjoyed this one)
Hacking the genome: how does it work, and should we?
And more
Besides the talks i’ve done some workshops:
Micropython on the badge (see my other post)
Kicad – PCB designing
Meanwhile we where looking at all the villages and hackerspaces. Loads of interesting people to meet. Like our neighbour two tents futher, he was also a home-brewer, and he brought a minifridge with beer taps connected to it.
When back at our tent or Bigreds Campervan, we talked about differences now and then. New technology, what we’ve been upto in the last years and tinkering, loads of tinkering.
I’ve brough a big plastic container with .. ehh “things to do ….”
My 6502, bigred helped me debugging the 16*2 display. (Luckily his campervan was packed with electronics!) We cannibalized one of his projects for a display, and re-flashed his eeprom programming arduino to test my display. ( The arduino i had to reflash later to program a rom he had given me for my 6502. ) Other toys he gave me: Print for the programmer, and a C64 Cartridge print for Exrom and Game.
Mini C64 with a little screen and raspberry zero.
5050 ledstrip (didn’t had time to reprogram this for our mood-light)
Handheld gamehat: Bigred found some old games he played when he was young
Mikrotik router, because i wanted to make a dmz for my girlfriends laptop. (MS)
Playing around with my Vuze XR camera
Huskycam, which i’m planning to use on a racetrack
DVB-T DAB FM Stick, got some hints and tips from Bigred. (Note to myself … fix the antenna!)
My Arduino touch bagpipe player with i2c
The wifi deauther, which has a display which i wanted to use to make a programmable clock for my 6502. Using a rotary encoder and the display to control the speed in Hz.
I spend many hours playing with the Badge and Kicad
Wrote some 6502 assembly, arduino sketches, php, bash and micropython.
While playing around with the badge i got some things working easily. Spinning logo and blinky leds. Next goal to achieve was, to get the gyroscope to control the angle of spinning. Most of the code worked, but the gyro values stayed zero! (After many hours …. you have to start/enable the chip/measurements on the bno055 first! .. duh! )
I didn’t had my dev directory from my main battlestation synced in my nextcloud, so changing things for the 6502 was a b*tch. Used vasm and acme to generate a bin file to use to fill the rom. Didn’t like the eeprom programmer program, because i could not easily check the rom contents. Have to look into that later on.
While learning to use Kicad, which i only had been using to draw schematics (besides fritzing) , i learned to create a pcb. Which gave me the idea to make a print for the power-on-reset for the 6502. Which is going to be the first PCB by ordering, instead of the old skool messing around with DIY print making. (see next post)
….. Oh, why my display was not working? I even connected my 8bit logic analyzer to the pins of the display.
Everything was correct. But i didn’t use a variable resistor for the contrast. Just a simple resistor i could find. Luckily … bigreds stash. All those hours debugging, all for one resistor! (I have to mention, we had a suspicion halfway. But it was too hot and we where too lazy to go to Bigred’s campervan, to get a potentiometer. )
65c22 connected, new data, and address-bus ribboncables!
First led on Register B blinking!
Notes: Temporary display wil be 2×16 Chars. Ram in place, but not connected (is emulated by the Arduino Mega at the moment) Rom is somewhere halfway the atlantic ocean .. still waiting on that one. Ben Eatons clock module is disconnected, i’m using the Arduino as programmable clock right now. (There wil be a little display and a rotary encoder to set clock speed.)
lda #$ff ; all bits
sta $6002 ; set direction (out) for B register
lda #$80 ; set 1 bit
sta $6000 ; set register B
lda #$00 ; reset bit
sta $6000 ; set register B
jmp $8005 ; jmp to bit set part
"If something is worth doing, it's worth overdoing."