Tag Archives: programming

6502 cont.

UPDATE: 20220823 Sid working

Kicad VIA/PIA tester

Above is my Kicad design (reverse engineering print below, which was made for my 6802CPU, which i could use to test the 6822 PIA)
The 6822 is simular to 6502 in design. So i’m going to redo this for my 6502.
The 7 segment displays are a start of hex-keyboard/display combo i’m going to post more of in the next days.

Below a part of the rom for the LCD dual line display.

Part of the ROM assembly code, top part is text (o.a. japanese)

Started to write routines which i can call to manipulate the display. Setting the pointer to a message, setting the line to use and a subset of controlls like: Center, Right, binary to ascii, scrolling, etcetera

        lda #0             ; set line number
        sta lineno         ; store
        jsr gotoline       ; goto line in display
        lda #<message      ; get address from message and store for printline subroutine
        sta messagestore
        lda #>message
        sta messagestore+1
        jsr printline      ; print

        lda #1  ; set line number
        sta lineno      ; store
        jsr gotoline
        lda #<message2
        sta messagestore
        lda #>message2
        sta messagestore+1
        jsr printline

Above additions:
New address decoder
Below left the new graphical display, below right a test board which shows address lines and decoded chip-enable lines.

A15 high -> ROM
A15 && A14 low -> RAM
combination of A15 low and A14 high – A13 and A12 wil select peripherals.

Adress decoding

Above is a start of a wirewrapped version, i also started a PCB design in KIcad that will continuously be changed as i alter designs.

UPDATE SID Working! Using new address decoder.

SID = $7000

makesound:
	lda #0
	sta SID+$5 ; Channel1 - attack/decay
	
	lda #250
	sta SID+$6 ; Channel1 - Sustain/Release
	
	lda #$95
	sta SID+$0 ; Channel1 - Frequency low-byte
	
	lda #$44
	sta SID+$1 ; Channel1 - Frequency high-byte

	lda #%00100001
	sta SID+$4 ; SAW + Gate

	lda #$0f
	sta SID+$18 ; Volume max

Memory map generator

Started to write a program to generate a memory map like this

It will be a python script which generates a ascii table.

| a15 | a14 | a13 | a12 | a11 | a10 | a09 | a08 | a07 | a06 | a05 | a04 | a03 | a02 | a01 | a00 |
|  1  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  | ROM
|  0  |  0  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  | RAM
|  0  |  1  |  1  |  x  |  x  |  x  |  x  |  x  |  x  |  x  |  x  |  x  |  a  |  a  |  a  |  a  | VIA
|  0  |  0  |  0  |  0  |  0  |  0  |  0  |  1  |  a  |  a  |  a  |  a  |  a  |  a  |  a  |  a  | PS

Above example shows:

  • Rom – $8000 and up
  • Ram – $0000 till $3FFF
  • Via chip – $6xxx-$7xxxx 16 addresses repeating in this block.
    This will be the interesting/hard part
  • Program stack – in RAM – $0100-$01FF

Generated output

| 0000 | ram |     |     |      |      |
| 00ff | ram |     |     |      |      |
| 0100 | ram |     | ps  |      |      |
| 01ff | ram |     | ps  |      |      |
| 0200 | ram |     |     |      |      |
| 3fff | ram |     |     |      |      |
| 4000 |     |     |     |      |      |
| 5fff |     |     |     |      |      |
| 6000 |     |     |     | via1 |      |
| 6fff |     |     |     | via1 |      |
| 7000 |     |     |     |      | via2 |
| 7fff |     |     |     |      | via2 |
| 8000 |     | rom |     |      |      |
| ffff |     | rom |     |      |      |
#!/bin/python

# 0 = address should be 0 .. Duh
# 1 = address should be 1 .. Duh
# a = address 0 or 1
# x = not connected, future function

# try
#via1 = ["0","1","1","0","x","x","x","x","x","x","0","x","a","a","a","a"]

rom = ["1","a","a","a","a","a","a","a","a","a","a","a","a","a","a","a"]
ram = ["0","0","a","a","a","a","a","a","a","a","a","a","a","a","a","a"]
via1 = ["0","1","1","0","x","x","x","x","x","x","x","x","a","a","a","a"]
via2 = ["0","1","1","1","x","x","x","x","x","x","x","x","a","a","a","a"]
ps  = ["0","0","0","0","0","0","0","1","a","a","a","a","a","a","a","a"]

counter = 0
prevhexw = f"{0:04x}"

prevram = "nix"
prevrom = "nix"
prevps = "nix"
prevvia1 = "nix"
prevvia2 = "nix"

while counter < 65536:
    binw = f"{counter:016b}"
    hexw = f"{counter:04x}"
    binint = bin(int(counter))
    address=0

    ramcheck=0    
    romcheck=0    
    pscheck=0
    via1check=0
    via2check=0

    printram = "   "
    printrom = "   "
    printps = "   "
    printvia1 = "    "
    printvia2 = "    "
    myram=ram.copy()
    myrom=rom.copy()
    myps=ps.copy()
    myvia1=via1.copy()
    myvia2=via2.copy()
    while address < 16:

        if myram[address] == "a":
            myram[address]=binw[address]
        if myram[address] == "x":
            myram[address]=binw[address]
        if myram[address] != binw[address]:
            ramcheck=1

        if myrom[address] == "a":
            myrom[address]=binw[address]
        if myrom[address] == "x":
            myrom[address]=binw[address]
        if myrom[address] != binw[address]:
            romcheck=1

        if myps[address] == "a":
            myps[address]=binw[address]
        if myps[address] == "x":
            myps[address]=binw[address]
        if myps[address] != binw[address]:
            pscheck=1

        if myvia1[address] == "a":
            myvia1[address]=binw[address]
        if myvia1[address] == "x":
            myvia1[address]=binw[address]
        if myvia1[address] != binw[address]:
            via1check=1

        if myvia2[address] == "a":
            myvia2[address]=binw[address]
        if myvia2[address] == "x":
            myvia2[address]=binw[address]
        if myvia2[address] != binw[address]:
            via2check=1


        address=address+1

    if ramcheck==0:
        printram="ram"
    if romcheck==0:
        printrom="rom"
    if pscheck==0:
        printps="ps "
    if via1check==0:
        printvia1="via1"
    if via2check==0:
        printvia2="via2"


    if prevram != printram or prevrom != printrom or prevps != printps or prevvia1 != printvia1 or prevvia2 != printvia2:
        printlinep = f"| {prevhexw} | {prevram} | {prevrom} | {prevps} | {prevvia1} | {prevvia2} |"
        printline = f"| {hexw} | {printram} | {printrom} | {printps} | {printvia1} | {printvia2} |"
        if prevram != "nix":
            print(printlinep)
        print(printline)
    prevram=printram
    prevrom=printrom
    prevps=printps
    prevvia1=printvia1
    prevvia2=printvia2
    prevhexw=hexw
    counter=counter+1;
printline = f"| {hexw} | {printram} | {printrom} | {printps} | {printvia1} | {printvia2} |"
print(printline)

Badge picture plus sound in micropython

python mch2022-tools/webusb_fat_dir.py /flash/apps/python/easy
for f in easy.mp3 easy.png icon.png __init__.py ; do python  mch2022-tools/webusb_fat_push.py $f /flash/apps/python/easy/$f ; done

Micropython code __init__.py

mport display
import mch22
from audio import play
import buttons
from time import sleep
from machine import Pin
from neopixel import NeoPixel

powerPin = Pin(19, Pin.OUT)
dataPin = Pin(5, Pin.OUT)
np = NeoPixel(dataPin, 5)
powerPin.on()


def on_home_btn(pressed):
  if pressed:
    mch22.exit_python()


display.drawPng(0,0,"/apps/python/easy/easy.png")
display.flush()



# Led setup
#   2   3    
#      1
#     0     4

np[0] = (23,5,15)
np[1] = (3,15,22)
np[2] = (25,24,1)
np[3] = (25,24,1)
np[4] = (23,4,15)
np.write()


buttons.attach(buttons.BTN_HOME, on_home_btn)
# playing with volume 0 to wakeup sound device, else it is going to clip
play('/apps/python/easy/easy.mp3', volume=0)
sleep(7)
while True:
    play('/apps/python/easy/easy.mp3', volume=100)
    sleep(30)

6502 progress

UPDATE: 20220815, 20220814, 20220815, 20230202

Flashing ROMs .. (eeproms). It used to be a pain in the *$$.
Burning took a looong time. But clearing one with UV took .. 20 minutes or so. Using one of these:

Altered clock module

  • Changed button press
  • Dipswitches for more speed control (red .. upper left)

Changed Rom/Ram

  • Changed addressing
  • Added RAM
  • ZIF Socket for ROM

VIC 6522

  • Fixed clock
  • Added buttons for interrupt

Display

  • Display works now
  • To test: Create Address logic to access display without VIA
    Can work, but not at high speed clock. Stays behind VIA
  • To buy: st7920 lcd 128×64

Generic improvements

  • Rewired most parts, using color codes
    (Blue data, Yellow Address and so on)
  • Added leds on data and address bus using ULN2803 darlington arrays
  • 100nF Decoupling capacitors on the power rails

To do’s or ‘have to look into’s’

  • For sound i planned to use a General Instrument AY-3-8910, it is somewhere in my Lab, i know it is.
    I saved this chip and a SID for my Amiga addon soundcard.
    Where are my plans for the simple v1 setup? (FOUND IT)

  • I have to start writing rom functions for display usage. Like
    JSR $ff00 – Clear screen subroutine .. etc
  • I’m scraping information from websites, to get started on my clock controller.
    ATmega328 with ssd1306 display and rotary encoder/dip switches

Notes about the movie:
Left side is Arduino IDE monitor reading Addressbus and Databus.
(I’m going to try to rewrite this to realtime disassemble)
Resetting system.
Stepping CPU with manual clock pulses.
Start vector being read at $FFFC/$FFFD.
Program being run from $8000.
Set clock on automatic ( ~ about 150 Hz )
Last opcodes you see a JMP loop 4C 2F 80, that is JMP $802F
Display enlarged on video, was not visible on movie i took on mobile.
(Wrong angle?)

Breadboard overview

Clock moduleReset module + Crystal
CPU + nmi/int buttonsRAM and ROM
Address decode + Bus divideAddres/Data bus leds
6522 VIA + Display2nd via + Buttons
?(sound board)

TIL: 6502 can run without ram only rom,expect when using JSR … which uses a program stack in RAM

TODO:

  • Make Clock module and 1Mhz Crystal switchable
  • NMI and INT debounce maken
  • Software buttons
  • Buy new darlingtons, for controlbus!
    • r/w, int, chip enables, etc
  • Labels on chips/breadboards

C64 PRG to cartridge.

I’ve got the tools and Bigred made me enthusiastic again.
My goal is to make a C64 Cartridge from a PRG. And Not any program, it is the 8085 Emulator from Sepp.

Serveral problems i have to ‘fix’

  • The program is 17K, Cartridges can only be 16K.
    So i have to use 2x 8K and compress the data.
    This means it have to be uncompressed at start time.
    ( I was thinking of using exomiser for this )
  • Program starts normally at $0820 and probably is not optimised to run anywhere else.
    So a starting routine has to copy the program from cartridge memory to the correct location

Luckily i have the source! How cool is that

For version 4.73 it states : Starting at $0820 .. but my hexdump is off by one??!?

root@battlestation:/home/fash/Projects/minipro# hexdump -C /tmp/8085.prg  | head
00000000  01 08 1e 08 c5 07 9e 32  30 38 30 20 42 59 20 4d  |.......2080 BY M|
00000010  41 52 54 49 4e 20 4d 45  59 45 52 49 4e 4b 00 00  |ARTIN MEYERINK..|
00000020  00 20 ec 08 20 7f 19 20  2b 2c 20 11 19 20 b8 08  |. .. .. +, .. ..|
00000030  20 20 2c 20 a0 2c 20 f2  2c 20 11 e1 4c 00 15 aa  |  , ., ., ..L...|
00000040  aa a2 06 ad b7 08 9d 48  d8 bd 48 04 20 88 39 9d  |.......H..H. .9.|
00000050  48 04 ca 10 ee a9 60 8d  4c 04 4c 50 47 00 a9 d0  |H.....`.L.LPG...|
00000060  2c a9 f0 8d 45 1f 4c 11  e1 1e 93 0d 20 20 4d 41  |,...E.L.....  MA|
00000070  52 54 49 4e 20 4d 45 59  45 52 49 4e 4b 27 53 0d  |RTIN MEYERINK'S.|
00000080  0d 20 38 30 38 35 20 45  4d 55 4c 41 54 4f 52 20  |. 8085 EMULATOR |
00000090  20 56 34 2e 38 30 0d 0d  20 20 28 43 29 20 31 20  | V4.80..  (C) 1 |

00000020 00 20 ec starts with 00 at $0020 .. and not 20 ?!?!

Tools used until now:

  • Vice – C64 Emulator
    x64 -cartcrt 8085.crt
  • c1541 – Linux disk tool for C64 images.
    Used this to extract the 8085emulator PRG
  • prg2crt.py – a convertor from PRG to a cartrid file which can be used by Vice
    python2 prg2crt.py 8085.prg 8085.crt
  • minipro – eeprom programming tool for Linux
    minipro -p AT28C64 -w /tmp/test.bin
  • cartconv (tool from vice to convert crt <-> bin)
    cartconv -t normal -i test.bin -n ‘my cart’ -o test.crt
  • xa – Cross assembler 65xx/R65C02/65816
  • ACME – the ACME Crossassembler for Multiple Environments
Memory Map C64 – source c64-wiki.com

Card Low starts at $8000, so that’s the place where those roms are going to be.
To place on this address:

Copy routine : from ($8000 + this copy routine) to $0820
When to decompress??
jmp routine to $0820

A cartridge file >16K and with his emulation headers seems to work??!

Also nice: Magic Desk Cartridge Generator V3.0

UPDATE: 20220811

exomizer sfx 0x0820 8085.prg -o data.exo # Compress and start at 0x0820 
xa frame.asm -o frame.bin # Add code and write binary
x64 --cart16 frame.bin # Test cartridge with Vice

frame.asm

;---------------------------------------------------------- 
; example usage
; xa frame.asm -o frame.bin
; cartconv -t normal -i frame.bin -n 'my cart' -o frame.crt
; x64 -cartcrt frame.crt
;----------------------------------------------------------

;no load-adress for bin-file, so no header here

*=$8000
.word launcher ;cold start
.word launcher ;warm start
.byte $c3	;c
.byte $c2	;b
.byte $cd	;m
.byte $38	;8
.byte $30	;0

launcher
  stx $d016
  jsr $fda3	;prepare irq
  jsr $fd50	;init memory
  jsr $fd15	;init i/o
  jsr $ff5b	;init video
                ;make sure this sets up everything you need,
                ;the calls above are probably sufficient
  ldx #$fb
  txs

;set up starting code outside of cartridge-area
move_starter
  ldx #(starter_end-starter_start)
loop1
  lda starter_start,x
  sta $100,x
  dex
  bpl loop1
  jmp $100
;---------------------------------
starter_start	
  ldx #$40 ;64 pages = 256 * 64 = 16384 Bytes
  ldy #0
loop
src
  lda exomized_data,y
dst
  sta $801,y
  iny
  bne loop
  inc src+2-starter_start+$100 
  inc dst+2-starter_start+$100
  dex
  bpl loop

;make sure settings for $01 and IRQ etc are correct for your code
;remember THIS table from AAY64:

;       Bit+-------------+-----------+------------+
;       210| $8000-$BFFF |$D000-$DFFF|$E000-$FFFF |
;  +---+---+-------------+-----------+------------+
;  | 7 |111| Cart.+Basic |    I/O    | Kernal ROM |
;  +---+---+-------------+-----------+------------+
;  | 6 |110|     RAM     |    I/O    | Kernal ROM |
;  +---+---+-------------+-----------+------------+
;  | 5 |101|     RAM     |    I/O    |    RAM     |
;  +---+---+-------------+-----------+------------+
;  | 4 |100|     RAM     |    RAM    |    RAM     |
;  +---+---+-------------+-----------+------------+
;  | 3 |011| Cart.+Basic | Char. ROM | Kernal ROM |
;  +---+---+-------------+-----------+------------+
;  | 2 |010|     RAM     | Char. ROM | Kernal ROM |
;  +---+---+-------------+-----------+------------+
;  | 1 |001|     RAM     | Char. ROM |    RAM     |
;  +---+---+-------------+-----------+------------+
;  | 0 |000|     RAM     |    RAM    |    RAM     |
;  +---+---+-------------+-----------+------------+

  lda #$35 ;cart is always on instead of BASIC unless it can be switched off via software
  sta $01
  jmp $80d ;for exomizer, i.e.

starter_end
;----------------------------------
exomized_data
.bin 2,0,"data.exo"
;syntax for exomizer 2.0.1:
;exomizer sfx sys game.prg -o data.exo
main_file_end
;fill up full $4000 bytes for bin file ($c000-$8000=$4000)
.dsb ($c000-main_file_end),0

Exomiser info

 Reading "8085.prg", loading from $0801 to $4CE9.
 Crunching from $0801 to $4CE9.
Phase 1: Instrumenting file
-----------------------------
 Length of indata: 17640 bytes.
 [building.directed.acyclic.graph.building.directed.acyclic.graph.]
 Instrumenting file, done.

Phase 2: Calculating encoding
-----------------------------
 pass 1: optimizing ..
 [finding.shortest.path.finding.shortest.path.finding.shortest.pat]
  size 80273.0 bits ~10035 bytes
 pass 2: optimizing ..
 [finding.shortest.path.finding.shortest.path.finding.shortest.pat]
  size 80039.0 bits ~10005 bytes
 pass 3: optimizing ..
 Calculating encoding, done.

Phase 3: Generating output file
------------------------------
 Encoding: 1101112133423160,1122,2010223445667788,032144406789BBCD
 Length of crunched data: 10034 bytes.
 Crunched data reduced 7606 bytes (43.12%)
 Target is self-decrunching C64 executable,
 jmp address $0820.
 Writing "data.exo" as prg, saving from $0801 to $304C.
Memory layout:   |Start |End   |
 Crunched data   | $07E7| $2F18|
 Decrunched data | $0801| $4CE9|
 Decrunch table  | $0334| $03D0|
 Decruncher      | $00FD| $01C0| and $9F,$A7,$AE,$AF
 Decrunch effect writes to $DBE7.
Decruncher:  |Enter |During|Exit  |
 RAM config  |   $37|   $37|   $37|
 IRQ enabled |     1|     1|     1|

UPDATE:20230126

; CODE COPY FROM http://www.lemon64.com/forum/viewtopic.php?t=60786&sid=2559442c8b963d7aac27cb13b493f372
; Thanks for posting: Richard of TND
; this is for a 16KB cart, using ACME!! 

      !to "mycart.crt",cart16crt 

scr = $0400 

DecrunchADDR = 2061 ;SYS 2061   (HEX $080D) 

      *=$8000 
      !word launcher 
      !word launcher 
      !byte $c3,$c2,$cd,$38,$30 ;CBM 80 
      
      

launcher 
   sei 
   stx $d016 
   jsr $fda3 ;prepare irq 
   jsr $fd50 ;input memory 
   jsr $fd15 ;initialise i/o 
   jsr $ff5b ;initialise video memory 
 
;For a more professional boot up. Make 
;the border and screen black. AFTER 
;the video memory, etc has finished. 

   lda #$00 
   sta $d020 
   sta $d021 
   cli 

;Switch off the screen. 

   lda $d011 
   and #%11101111 
   sta $d011 

;Move transfer code over to the screen 
;memory. 

   ldx #$00 
tloop   lda transfer,x 
   sta scr,x 
   inx 
   bne tloop 
   jmp scr 

transfer 
   ldx #$00 
tr1      lda linkedgame,x         ;Move from linked address 
  sta $0801,x                        ;Direct to BASIC start address 
   inx 
   bne tr1 
   inc scr+4 
   inc scr+7 
   lda scr+4 
   bne transfer 
   jsr $e453 ;load basic vectors 
   jsr $e3bf ;init basic ram 

   ldx #$fb 
   txs 

   ;Execute the game, by jumping to the 
   ;de-cruncher's start address. 
   ;jmp $0820 
   jmp DecrunchADDR


;Link crunched game as a PRG file to memory after 
;the cartridge build code. 

linkedgame 
   !bin "8085sys.prg",,2 

FileSize = * 
!if FileSize >$c000 { 
!error "FILE SIZE IS TOO BIG TO FIT 16KB CARTRIDGE" 
} else { 

   *=$c000 
} 

Exomizer:

exomizer sfx sys  8085.prg -o 8085sys.prg
 Reading "8085.prg", loading from $0801 to $4CE9.
 Crunching from $0801 to $4CE9.
Phase 1: Instrumenting file
-----------------------------
 Length of indata: 17640 bytes.
 [building.directed.acyclic.graph.building.directed.acyclic.graph.]
 Instrumenting file, done.

Phase 2: Calculating encoding
-----------------------------
 pass 1: optimizing ..
 [finding.shortest.path.finding.shortest.path.finding.shortest.pat]
  size 80273.0 bits ~10035 bytes
 pass 2: optimizing ..
 [finding.shortest.path.finding.shortest.path.finding.shortest.pat]
  size 80039.0 bits ~10005 bytes
 pass 3: optimizing ..
 Calculating encoding, done.

Phase 3: Generating output file
------------------------------
 Encoding: 1101112133423160,1122,2010223445667788,032144406789BBCD
 Length of crunched data: 10034 bytes.
 Crunched data reduced 7606 bytes (43.12%)
 Target is self-decrunching C64 executable,
 jmp address $0820.
 Writing "8085sys.prg" as prg, saving from $0801 to $304C.
Memory layout:   |Start |End   |
 Crunched data   | $07E7| $2F18|
 Decrunched data | $0801| $4CE9|
 Decrunch table  | $0334| $03D0|
 Decruncher      | $00FD| $01C0| and $9F,$A7,$AE,$AF
 Decrunch effect writes to $DBE7.
Decruncher:  |Enter |During|Exit  |
 RAM config  |   $37|   $37|   $37|
 IRQ enabled |     1|     1|     1|
exomizer sfx $\0801 8085.prg -o 8085out.prg
 Reading "8085.prg", loading from $0801 to $4CE9.
 Crunching from $0801 to $4CE9.
Phase 1: Instrumenting file
-----------------------------
 Length of indata: 17640 bytes.
 [building.directed.acyclic.graph.building.directed.acyclic.graph.]
 Instrumenting file, done.

Phase 2: Calculating encoding
-----------------------------
 pass 1: optimizing ..
 [finding.shortest.path.finding.shortest.path.finding.shortest.pat]
  size 80273.0 bits ~10035 bytes
 pass 2: optimizing ..
 [finding.shortest.path.finding.shortest.path.finding.shortest.pat]
  size 80039.0 bits ~10005 bytes
 pass 3: optimizing ..
 Calculating encoding, done.

Phase 3: Generating output file
------------------------------
 Encoding: 1101112133423160,1122,2010223445667788,032144406789BBCD
 Length of crunched data: 10034 bytes.
 Crunched data reduced 7606 bytes (43.12%)
 Target is self-decrunching C64 executable,
 jmp address $0801.
 Writing "8085out.prg" as prg, saving from $0801 to $304C.
Memory layout:   |Start |End   |
 Crunched data   | $07E7| $2F18|
 Decrunched data | $0801| $4CE9|
 Decrunch table  | $0334| $03D0|
 Decruncher      | $00FD| $01C0| and $9F,$A7,$AE,$AF
 Decrunch effect writes to $DBE7.
Decruncher:  |Enter |During|Exit  |
 RAM config  |   $37|   $37|   $37|
 IRQ enabled |     1|     1|     1|

This looks okay: (monitor in vice)

Attaching crt in vice

Maybe one of these problems:

1) you CAN NOT use BASIC routines when a cart is inserted (without weird tricks, i.e.
storing BASIC routines on cart etc)

2) you need to be careful about $01 as you may map in ROM at $8000 without expecting it.

Please refer to this if in doubt:
http://unusedino.de/ec64/technical/aay/c64/memcfg.html

[3] You should also be careful about the usage of KERNAL routines as some of them
sweep across BASIC-code as well!

Finding files on my fileserver

I use several tools to find files on my server.

Loads of stuff on my main fileserver.
(Graph is a great tool called DUC) https://duc.zevv.nl/

Besides a search engine, i have a file finder.
Due to the massive amount of data, i like to find things by other means than knowing the directory structure.

I can find files by filename, but also by contents.

I’ll talk about find by contents first.

I’ve got loads of documents in Pdf, HTML, txt, doc, sheets , wordperfect etcetera.
Those documents i can find using a tool named Namazu.
This is quite a old tool, but i’m using it for a long time and it still works great.
I didn’t find a better replacement yet.
(But i’ve been looking into : elasticsearch, Solr, Lucene)

http://www.namazu.org/ is easy to install, but if you want the tool to scrape different kinds of documents you have to add some additional software.

My multipurpose printer can scan pages in pdf.
Those are only embedded jpg’s in a pdf container.
I will talk about how i handle these later.

My current start page :
This index contains 267,763 documents and 14,036,762 keywords.
Search example of namazu

Some things to consider when implementing namazu:

  • tweak the file types to scrape, it makes no sense to scrape binaries
  • tweak the directories to scrape (example below)
    • 0 1 * * 1 fash /usr/bin/mknmz -f /etc/namazu/mknmzrc –output-dir=/namazu/ /mnt/private/paperwork/ /mnt/private/information/ /mnt/private/Art\ en\ hobby\ Projects/ /mnt/private/Music\ Projects/ /mnt/private/bagpipe-music-writer/ –exclude=XXX –exclude=/mnt/binaries > /tmp/namazu.log 2>&1
  • you can set a parameter in the config for search only, this disables downloading the found link in the results!

Before Namazu i used HtDig.

Screenshot htdig

HtDIg also can scrape remote websites, Namazu can’t.

Preparing PDF for indexing:

I’ve written some scripts to make PDFs containing scanned text scrape-able.
( https://gitlab.com/fash/inotify-scanner-parser )
What it does:

  • My scanner puts a scanned pdf on my fileserver in a certain directory
  • Inotify detects a written file
  • it will copy the file, run OCR on it (tesseract) and writes a txt file (scapeable)
  • After that the text will be embedded (overlay) on the PDF, so now it becomes searchable/scrapeable
  • When certain keywords are found, it will sort documents in subdirs
Example from a scanned jpg, i can find OCR words!
(note .. the overlay is exact on the found words)

Finding files by name:

For finding files a made a little webpage like this:

It is a simple webpage grabbing through a list of files.
It takes the first keyword and does a grep, it takes a second keyword to match also.
I can select different file databases to search. (This case is private)
Between search and private i can give the number of entries to print.
So i can do
Search “ansible” NOT “tower” 50 entries from the public fileset

Crontab:

20 5 * * * /usr/bin/find /mnt/shark*  > /var/www/html/findfiles/sharkoon
10 4 * * * /usr/bin/find /tank/populair > /var/www/html/findfiles/populair
20 4 * * * /usr/bin/find /tank/celtic > /var/www/html/findfiles/celtic
etc

And a php script (dirty fast hack, never came around it to make it a final version)

<html><head><title></title></body>
<font face="Tahoma"><small>|keyword|(keyword)|search|(nr results)|NOT SECOND KEYWORD|share|</small><BR>
Search: <form method="post" action="/findfiles/?"><input type="Text" name="words" size=10 value=""><input type="Text" name="words2" size=10 value=""><input type="Submit" name="submit" value="search"><input type="Text" name="nrlines" size=3 value=""><input type="checkbox" name="not" unchecked>
<SELECT NAME=findfile>
<OPTION VALUE=private>private
<OPTION VALUE=celtic>celtic
<OPTION VALUE=populair>populair
<OPTION VALUE=dump>public
<OPTION VALUE=sharkoon>sharkoon
</SELECT>
</form>
<P><PRE>
<?php
$words2=$_POST['words2'];
$words=$_POST['words'];
$filefile=$_POST['filefile'];
$findfile=$_POST['findfile'];
$nrlines=$_POST['nrlines'];
$not=$_POST['not'];


if ($words2=="xsearch") { $findfile="other"; $words2=""; }
if ($nrlines) {  } else { $nrlines=100; }
if ($words && $words2=="") {
$words = preg_replace("(\r\n|\n|\r)", "", $words);
$words = preg_replace("/[^0-9a-z]/i",'', $words);
$command = "/bin/cat $findfile |/bin/grep -i $words |head -$nrlines";
$blah=shell_exec($command);
$blah=str_replace($words, "<b><font color=red>$words</font></b>",$blah);
print $blah;
}
if (($words) and ($words2)) {
$words = preg_replace("(\r\n|\n|\r)", "", $words);
$words = preg_replace("/[^0-9a-z.]/i",'', $words);
$words2 = preg_replace("(\r\n|\n|\r)", "", $words2);
$words2 = preg_replace("/[^0-9a-z.]/i",'', $words2);
if ($not=="on") {
$command = "/bin/cat $findfile |/bin/grep -i $words | /bin/grep -iv $words2 |head -$nrlines";
} else {
$command = "/bin/cat $findfile |/bin/grep -i $words | /bin/grep -i $words2 |head -$nrlines";
}
$blah=shell_exec($command);
$blah=str_replace($words, "<b><font color=red>$words</font></b>",$blah);
$blah=str_replace($words2, "<b><font color=red>$words2</font></b>",$blah);
print $blah;
}
?>
</PRE>
</body></html>

Altair 8800

The Altair 8800 is a microcomputer designed in 1974 by MITS and based on the Intel 8080CPU. Interest grew quickly after it was featured on the cover of the January 1975 issue of Popular Electronics and was sold by mail order through advertisements there, in Radio-Electronics, and in other hobbyist magazines.

(picture from wikipedia)

UPDATE: 20220804 – Added Octal sheet

I alway loved the simple setup of this computer.
There was no screen and no keyboard.
Only later additions to the machine provided these.

One explanation of the Altair name, is that the name was inspired by Star Trek episode “Amok Time“, where the Enterprise crew went to Altair (Six).

There are only a few differences between the used 8080 CPU and the 8085 CPU of a machine i learned machinecode on.

See : https://www.henriaanstoot.nl/1989/01/01/8085-machinecode-at-school/

So for a really long time i wanted to have a Altair alike machine. There are do it yourself kits for sale. Which look like perfect relica’s and there are virtual machines and emulators. But i wanted to have the feeling of throwing the switches.
You can find a emulator here (https://s2js.com/altair/)

So i bought the components, a poker case which can hold the machine. And started building today.

The backend is a arduino based emulator, but with real leds and switches!
(https://create.arduino.cc/projecthub/david-hansel/arduino-altair-8800-simulator-3594a6)

Next to do:

  • Fix plate into case
  • Solder a LOT of wires and components!
    • Shall i get rid off the transitors and use darlington arrays?
  • Put lettering on the aluminium plate : Functions and Bus information.
  • Build a power connector in the case

And then … programming 🙂

UPDATE: 20220804 – Added Octal sheet

The Altair is a octal based machine, but i couldn’t find a opcode list in Octal. So i generated one.
When entering a MOV D,M instruction for example, you have to enter
x 0 1 0 1 0 1 1 0 using the switches
Thats 126 in octal but most tables are in hex ( MOV D,M is 56, which is 0101 0110 but not that clear on the switches)

Opcode (oct)InstructionfunctionsizeflagsOpcode
000NOP10x00
001LXI B,D16B <- byte 3, C <- byte 230x01
002STAX B(BC) <- A10x02
003INX BBC <- BC+110x03
004INR BB <- B+11Z, S, P, AC0x04
005DCR BB <- B-11Z, S, P, AC0x05
006MVI B, D8B <- byte 220x06
007RLCA = A << 1; bit 0 = prev bit 7; CY = prev bit 71CY0x07
0100x08
011DAD BHL = HL + BC1CY0x09
012LDAX BA <- (BC)10x0a
013DCX BBC = BC-110x0b
014INR CC <- C+11Z, S, P, AC0x0c
015DCR CC <-C-11Z, S, P, AC0x0d
016MVI C,D8C <- byte 220x0e
017RRCA = A >> 1; bit 7 = prev bit 0; CY = prev bit 01CY0x0f
0200x10
021LXI D,D16D <- byte 3, E <- byte 230x11
022STAX D(DE) <- A10x12
023INX DDE <- DE + 110x13
024INR DD <- D+11Z, S, P, AC0x14
025DCR DD <- D-11Z, S, P, AC0x15
026MVI D, D8D <- byte 220x16
027RALA = A << 1; bit 0 = prev CY; CY = prev bit 71CY0x17
0300x18
031DAD DHL = HL + DE1CY0x19
032LDAX DA <- (DE)10x1a
033DCX DDE = DE-110x1b
034INR EE <-E+11Z, S, P, AC0x1c
035DCR EE <- E-11Z, S, P, AC0x1d
036MVI E,D8E <- byte 220x1e
037RARA = A >> 1; bit 7 = prev bit 7; CY = prev bit 01CY0x1f
0400x20
041LXI H,D16H <- byte 3, L <- byte 230x21
042SHLD adr(adr) <-L; (adr+1)<-H30x22
043INX HHL <- HL + 110x23
044INR HH <- H+11Z, S, P, AC0x24
045DCR HH <- H-11Z, S, P, AC0x25
046MVI H,D8H <- byte 220x26
047DAAspecial10x27
0500x28
051DAD HHL = HL + HI1CY0x29
052LHLD adrL <- (adr); H<-(adr+1)30x2a
053DCX HHL = HL-110x2b
054INR LL <- L+11Z, S, P, AC0x2c
055DCR LL <- L-11Z, S, P, AC0x2d
056MVI L, D8L <- byte 220x2e
057CMAA <- !A10x2f
0600x30
061LXI SP, D16SP.hi <- byte 3, SP.lo <- byte 230x31
062STA adr(adr) <- A30x32
063INX SPSP = SP + 110x33
064INR M(HL) <- (HL)+11Z, S, P, AC0x34
065DCR M(HL) <- (HL)-11Z, S, P, AC0x35
066MVI M,D8(HL) <- byte 220x36
067STCCY = 11CY0x37
0700x38
071DAD SPHL = HL + SP1CY0x39
072LDA adrA <- (adr)30x3a
073DCX SPSP = SP-110x3b
074INR AA <- A+11Z, S, P, AC0x3c
075DCR AA <- A-11Z, S, P, AC0x3d
076MVI A,D8A <- byte 220x3e
077CMCCY=!CY1CY0x3f
100MOV B,BB <- B10x40
101MOV B,CB <- C10x41
102MOV B,DB <- D10x42
103MOV B,EB <- E10x43
104MOV B,HB <- H10x44
105MOV B,LB <- L10x45
106MOV B,MB <- (HL)10x46
107MOV B,AB <- A10x47
110MOV C,BC <- B10x48
111MOV C,CC <- C10x49
112MOV C,DC <- D10x4a
113MOV C,EC <- E10x4b
114MOV C,HC <- H10x4c
115MOV C,LC <- L10x4d
116MOV C,MC <- (HL)10x4e
117MOV C,AC <- A10x4f
120MOV D,BD <- B10x50
121MOV D,CD <- C10x51
122MOV D,DD <- D10x52
123MOV D,ED <- E10x53
124MOV D,HD <- H10x54
125MOV D,LD <- L10x55
126MOV D,MD <- (HL)10x56
127MOV D,AD <- A10x57
130MOV E,BE <- B10x58
131MOV E,CE <- C10x59
132MOV E,DE <- D10x5a
133MOV E,EE <- E10x5b
134MOV E,HE <- H10x5c
135MOV E,LE <- L10x5d
136MOV E,ME <- (HL)10x5e
137MOV E,AE <- A10x5f
140MOV H,BH <- B10x60
141MOV H,CH <- C10x61
142MOV H,DH <- D10x62
143MOV H,EH <- E10x63
144MOV H,HH <- H10x64
145MOV H,LH <- L10x65
146MOV H,MH <- (HL)10x66
147MOV H,AH <- A10x67
150MOV L,BL <- B10x68
151MOV L,CL <- C10x69
152MOV L,DL <- D10x6a
153MOV L,EL <- E10x6b
154MOV L,HL <- H10x6c
155MOV L,LL <- L10x6d
156MOV L,ML <- (HL)10x6e
157MOV L,AL <- A10x6f
160MOV M,B(HL) <- B10x70
161MOV M,C(HL) <- C10x71
162MOV M,D(HL) <- D10x72
163MOV M,E(HL) <- E10x73
164MOV M,H(HL) <- H10x74
165MOV M,L(HL) <- L10x75
166HLTspecial10x76
167MOV M,A(HL) <- A10x77
170MOV A,BA <- B10x78
171MOV A,CA <- C10x79
172MOV A,DA <- D10x7a
173MOV A,EA <- E10x7b
174MOV A,HA <- H10x7c
175MOV A,LA <- L10x7d
176MOV A,MA <- (HL)10x7e
177MOV A,AA <- A10x7f
200ADD BA <- A + B1Z, S, P, CY, AC0x80
201ADD CA <- A + C1Z, S, P, CY, AC0x81
202ADD DA <- A + D1Z, S, P, CY, AC0x82
203ADD EA <- A + E1Z, S, P, CY, AC0x83
204ADD HA <- A + H1Z, S, P, CY, AC0x84
205ADD LA <- A + L1Z, S, P, CY, AC0x85
206ADD MA <- A + (HL)1Z, S, P, CY, AC0x86
207ADD AA <- A + A1Z, S, P, CY, AC0x87
210ADC BA <- A + B + CY1Z, S, P, CY, AC0x88
211ADC CA <- A + C + CY1Z, S, P, CY, AC0x89
212ADC DA <- A + D + CY1Z, S, P, CY, AC0x8a
213ADC EA <- A + E + CY1Z, S, P, CY, AC0x8b
214ADC HA <- A + H + CY1Z, S, P, CY, AC0x8c
215ADC LA <- A + L + CY1Z, S, P, CY, AC0x8d
216ADC MA <- A + (HL) + CY1Z, S, P, CY, AC0x8e
217ADC AA <- A + A + CY1Z, S, P, CY, AC0x8f
220SUB BA <- A – B1Z, S, P, CY, AC0x90
221SUB CA <- A – C1Z, S, P, CY, AC0x91
222SUB DA <- A + D1Z, S, P, CY, AC0x92
223SUB EA <- A – E1Z, S, P, CY, AC0x93
224SUB HA <- A + H1Z, S, P, CY, AC0x94
225SUB LA <- A – L1Z, S, P, CY, AC0x95
226SUB MA <- A + (HL)1Z, S, P, CY, AC0x96
227SUB AA <- A – A1Z, S, P, CY, AC0x97
230SBB BA <- A – B – CY1Z, S, P, CY, AC0x98
231SBB CA <- A – C – CY1Z, S, P, CY, AC0x99
232SBB DA <- A – D – CY1Z, S, P, CY, AC0x9a
233SBB EA <- A – E – CY1Z, S, P, CY, AC0x9b
234SBB HA <- A – H – CY1Z, S, P, CY, AC0x9c
235SBB LA <- A – L – CY1Z, S, P, CY, AC0x9d
236SBB MA <- A – (HL) – CY1Z, S, P, CY, AC0x9e
237SBB AA <- A – A – CY1Z, S, P, CY, AC0x9f
240ANA BA <- A & B1Z, S, P, CY, AC0xa0
241ANA CA <- A & C1Z, S, P, CY, AC0xa1
242ANA DA <- A & D1Z, S, P, CY, AC0xa2
243ANA EA <- A & E1Z, S, P, CY, AC0xa3
244ANA HA <- A & H1Z, S, P, CY, AC0xa4
245ANA LA <- A & L1Z, S, P, CY, AC0xa5
246ANA MA <- A & (HL)1Z, S, P, CY, AC0xa6
247ANA AA <- A & A1Z, S, P, CY, AC0xa7
250XRA BA <- A ^ B1Z, S, P, CY, AC0xa8
251XRA CA <- A ^ C1Z, S, P, CY, AC0xa9
252XRA DA <- A ^ D1Z, S, P, CY, AC0xaa
253XRA EA <- A ^ E1Z, S, P, CY, AC0xab
254XRA HA <- A ^ H1Z, S, P, CY, AC0xac
255XRA LA <- A ^ L1Z, S, P, CY, AC0xad
256XRA MA <- A ^ (HL)1Z, S, P, CY, AC0xae
257XRA AA <- A ^ A1Z, S, P, CY, AC0xaf
260ORA BA <- A | B1Z, S, P, CY, AC0xb0
261ORA CA <- A | C1Z, S, P, CY, AC0xb1
262ORA DA <- A | D1Z, S, P, CY, AC0xb2
263ORA EA <- A | E1Z, S, P, CY, AC0xb3
264ORA HA <- A | H1Z, S, P, CY, AC0xb4
265ORA LA <- A | L1Z, S, P, CY, AC0xb5
266ORA MA <- A | (HL)1Z, S, P, CY, AC0xb6
267ORA AA <- A | A1Z, S, P, CY, AC0xb7
270CMP BA – B1Z, S, P, CY, AC0xb8
271CMP CA – C1Z, S, P, CY, AC0xb9
272CMP DA – D1Z, S, P, CY, AC0xba
273CMP EA – E1Z, S, P, CY, AC0xbb
274CMP HA – H1Z, S, P, CY, AC0xbc
275CMP LA – L1Z, S, P, CY, AC0xbd
276CMP MA – (HL)1Z, S, P, CY, AC0xbe
277CMP AA – A1Z, S, P, CY, AC0xbf
300RNZif NZ, RET10xc0
301POP BC <- (sp); B <- (sp+1); sp <- sp+210xc1
302JNZ adrif NZ, PC <- adr30xc2
303JMP adrPC <= adr30xc3
304CNZ adrif NZ, CALL adr30xc4
305PUSH B(sp-2)<-C; (sp-1)<-B; sp <- sp – 210xc5
306ADI D8A <- A + byte2Z, S, P, CY, AC0xc6
307RST 0CALL $010xc7
310RZif Z, RET10xc8
311RETPC.lo <- (sp); PC.hi<-(sp+1); SP <- SP+210xc9
312JZ adrif Z, PC <- adr30xca
3130xcb
314CZ adrif Z, CALL adr30xcc
315CALL adr(SP-1)<-PC.hi;(SP-2)<-PC.lo;SP<-SP-2;PC=adr30xcd
316ACI D8A <- A + data + CY2Z, S, P, CY, AC0xce
317RST 1CALL $810xcf
320RNCif NCY, RET10xd0
321POP DE <- (sp); D <- (sp+1); sp <- sp+210xd1
322JNC adrif NCY, PC<-adr30xd2
323OUT D8special20xd3
324CNC adrif NCY, CALL adr30xd4
325PUSH D(sp-2)<-E; (sp-1)<-D; sp <- sp – 210xd5
326SUI D8A <- A – data2Z, S, P, CY, AC0xd6
327RST 2CALL $1010xd7
330RCif CY, RET10xd8
3310xd9
332JC adrif CY, PC<-adr30xda
333IN D8special20xdb
334CC adrif CY, CALL adr30xdc
3350xdd
336SBI D8A <- A – data – CY2Z, S, P, CY, AC0xde
337RST 3CALL $1810xdf
340RPOif PO, RET10xe0
341POP HL <- (sp); H <- (sp+1); sp <- sp+210xe1
342JPO adrif PO, PC <- adr30xe2
343XTHLL <-> (SP); H <-> (SP+1)10xe3
344CPO adrif PO, CALL adr30xe4
345PUSH H(sp-2)<-L; (sp-1)<-H; sp <- sp – 210xe5
346ANI D8A <- A & data2Z, S, P, CY, AC0xe6
347RST 4CALL $2010xe7
350RPEif PE, RET10xe8
351PCHLPC.hi <- H; PC.lo <- L10xe9
352JPE adrif PE, PC <- adr30xea
353XCHGH <-> D; L <-> E10xeb
354CPE adrif PE, CALL adr30xec
3550xed
356XRI D8A <- A ^ data2Z, S, P, CY, AC0xee
357RST 5CALL $2810xef
360RPif P, RET10xf0
361POP PSWflags <- (sp); A <- (sp+1); sp <- sp+210xf1
362JP adrif P=1 PC <- adr30xf2
363DIspecial10xf3
364CP adrif P, PC <- adr30xf4
365PUSH PSW(sp-2)<-flags; (sp-1)<-A; sp <- sp – 210xf5
366ORI D8A <- A | data2Z, S, P, CY, AC0xf6
367RST 6CALL $3010xf7
370RMif M, RET10xf8
371SPHLSP=HL10xf9
372JM adrif M, PC <- adr30xfa
373EIspecial10xfb
374CM adrif M, CALL adr30xfc
3750xfd
376CPI D8A – data2Z, S, P, CY, AC0xfe
377RST 7CALL $3810xff

Race track Controller

I got a vintage racetrack from a colleage a while back.

In the past i had some ideas controlling train or race tracks.
For train tracks i wanted to write intelligent maneuver software.
For a racetrack a web controllable race. Maybe with a webcam mounted on the car??

L298N – DC motor controller

So i bought a little DC motor controller (2 channels) and took a esp32.

ESP: 
GPIO04 Player1 IN1 
GPIO05 Player1 IN2
GPIO19 Player2 IN1 
GPIO18 Player2 IN2
GPIO13 PWM Player1
GPIO14 PWM Player2

The webinterface is behind a reverse proxy (apache)

TO BE POSTED .. arduino code

<VirtualHost *:443>
   SSLEngine on
   SSLProxyEngine On

   SSLProtocol all -SSLv2 -SSLv3 +TLSv1
   SSLCipherSuite ALL:!ADH:!EXPORT:!SSLv2:!RC4+RSA:+HIGH:+MEDIUM

   SSLCertificateFile /etc/ssl/.......cer
   SSLCertificateKeyFile /etc/ssl/private/........key
   SSLCertificateChainFile /etc/ssl/private/GlobalSignRootCA.cer
   SSLCertificateChainFile /etc/ssl/private/AlphaSSLCA-SHA256-G2.cer

   CustomLog /var/log/httpd/media_ssl_request_log "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"


    ServerAdmin webmaster@henriaanstoot.nl
    ServerName race.henriaanstoot.nl

ProxyRequests Off
ProxyPreserveHost On
SSLProxyVerify none
SSLProxyCheckPeerCN off
SSLProxyCheckPeerName off

<Location />
ProxyPass  http://10.1.0.25/
ProxyPassReverse  http://10.1.0.25/
</Location>

    ErrorLog /var/log/httpd/race.henriaanstoot.nl-error.log
    CustomLog /var/log/httpd/race.henriaanstoot.nl-access.log combined
</VirtualHost>

Arduino IDE

Adding boards:

File > Preferences > Additional Boards
Add url (comma separated)
Press OK

ESP32 :

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

ATTINY85:

https://arduino.esp8266.com/stable/package_esp8266com_index.json,https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json

After that go to the Board manager.
Tools > Board: ..... > Board Manager
Search board, click and install.
NOTE: Some sketches require a specific version!

Select your board, and write/open you sketch.

First thing to do is test compiling your sketch

Press the little button on the left

Libraries:

When you get a compile error like below, you are missing those libraries

Goto tools > Manage libraries

Search for your needed library, sometimes there are multiple which look alike. This is a trial and error approach.
Sometimes it doesn’t exists and you need to upload a zip containing the library. (Sketch > Include Library > Add .zip library

Downloading a zip containing the library
Adding the library zip file

When looking at the first lines of you sketch, there are include statements like:

#include <WiFi.h>
#include <AsyncTCP.h>
#include <ESPAsyncWebServer.h>

But sometimes there are statements without the < > characters.
Then it will be a included file just for your sketch.

Note the second tab MPU6050x.h which contains specific code only for this sketch.

Redo a test recompile using the tic icon again.

Everything okay? .. Select the correct port in Tools > Port
And press the Arrowright icon to upload/flash.
Note: sometimes you have to hold a button or press a little flash button on your device to flash.

esptool.py v3.3
Serial port COM8
Connecting.....
Chip is ESP32-D0WDQ6-V3 (revision 3)
Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
Crystal is 40MHz
MAC: c8:c9:a3:f9:02:d0
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Configuring flash size...
Flash will be erased from 0x00001000 to 0x00005fff...
Flash will be erased from 0x00008000 to 0x00008fff...
Flash will be erased from 0x0000e000 to 0x0000ffff...
Flash will be erased from 0x00010000 to 0x000c7fff...
Flash params set to 0x022f
Compressed 18880 bytes to 12992...
Writing at 0x00001000... (100 %)
Wrote 18880 bytes (12992 compressed) at 0x00001000 in 0.3 seconds (effective 482.8 kbit/s)...
Hash of data verified.
Compressed 3072 bytes to 128...
Writing at 0x00008000... (100 %)
Wrote 3072 bytes (128 compressed) at 0x00008000 in 0.0 seconds (effective 627.7 kbit/s)...
Hash of data verified.
Compressed 8192 bytes to 47...
Writing at 0x0000e000... (100 %)
Wrote 8192 bytes (47 compressed) at 0x0000e000 in 0.1 seconds (effective 1087.9 kbit/s)...
Hash of data verified.
Compressed 750976 bytes to 477779...
Writing at 0x00010000... (3 %)
...
...
...
Writing at 0x000bb633... (93 %)
Writing at 0x000c0acd... (96 %)
Writing at 0x000c6649... (100 %)
Wrote 750976 bytes (477779 compressed) at 0x00010000 in 6.3 seconds (effective 947.4 kbit/s)...
Hash of data verified.

Leaving...
Hard resetting via RTS pin...

Most of the boards you can connect via micro-usb.
Sometimes you need adaptors like:

TIPS ‘n tricks:

Open same file in another editor, so you can compare for example the top (declarations) and futher down the code.
Else you could be ending up scolling up/down all day long. And probably forgetting how a variablename was exacly spelled.

Use serial monitor!
When debugging this is a valuable tool.
Enter statements into you code, which prints debugging info to a serial monitoring window when your device is still hookedup to your PC.

Example printing connected IP and values registered
You even can use serial plotting!!

How to print?

void setup(){
  Serial.begin(115200);
  ... code 
  Serial.println("Connecting...");
  ... code
  Serial.println(WiFi.localIP());

  or 

  Serial.println(measuredvalue);

Other obvious tips:
Add comment lines (documentation)
Use variable names which make sense!
( Hard to find what aaaa() does, or what tmp-a is, but
LastTempValue says a lot more)

MCH 2022

Back from the hackers event “May Contain Hackers”

MCH2022 is a nonprofit outdoor hacker camp taking place in Zeewolde, the Netherlands, July 22 to 26 2022. The event is organized for and by volunteers from the worldwide hacker community.

Knowledge sharing, technological advancement, experimentation, connecting with your hacker peers and hacking are some of the core values of this event.

MCH2022 is the successor of a string of similar events happening every four years since 1989.
These are GHPHEUHIPHALWTHHAROHM and SHA.

I’ve bin to several of these big events. Besides these big events are many different smaller events (wannull, ne2000 etc).

First one i’ve been was HIP97. I went with Bigred at that time.
I had to get the tickets at that time, he didn’t had a handle at that time. It was Monique who came up with his new nick.

After HIP97 there was HAL2001 WTH2005 and OHM2013 which i was present.
HAL2001 the whole ICEcrew was present, WTH a part of them, OHM a few and i was with a few PRUTS friends.

Now i was with my girlfriend, AND with Bigred again!
Loads of fun and memories. Had not seen Bigred since a inbetween hacker party at my place.
So ’97 and now ’22 .. jeez 25 years!

So MCH, it was great again.
Loads of stuff to do and to see.
Weather was … okay. Two days where really hot, one day some light rain but a load of wind. Our neighbours tent collapsed, beer tents where reenforced.
First campsite with a supermarket!
Music stage was awesome, lasers and fire!

I went to a lot of talks, even my girlfriend found some she was interested in.

This was the last time i’ve brought my “Windows free zone tape”
This big roll of tape was used on many occasions.
I got this roll somewhere < 2000, I did a search but couldn’t find anything mentioning it on the web. Maybe some archive.org entry?

  • Starting a Home Computer Museum (which i almost did in the past)
  • streaming 360 video (going to try this with my Vuze XR Camera)
  • Non-Euclidean Doom: what happens to a game when pi is not 3.14159…
    (Really enjoyed this one)
  • Hacking the genome: how does it work, and should we?
  • And more

Besides the talks i’ve done some workshops:

  • Micropython on the badge (see my other post)
  • Kicad – PCB designing

Meanwhile we where looking at all the villages and hackerspaces. Loads of interesting people to meet. Like our neighbour two tents futher, he was also a home-brewer, and he brought a minifridge with beer taps connected to it.

When back at our tent or Bigreds Campervan, we talked about differences now and then. New technology, what we’ve been upto in the last years and tinkering, loads of tinkering.

I’ve brough a big plastic container with .. ehh “things to do ….”

  • My 6502, bigred helped me debugging the 16*2 display.
    (Luckily his campervan was packed with electronics!)
    We cannibalized one of his projects for a display, and re-flashed his eeprom programming arduino to test my display. ( The arduino i had to reflash later to program a rom he had given me for my 6502. )
    Other toys he gave me: Print for the programmer, and a C64 Cartridge print for Exrom and Game.
  • Mini C64 with a little screen and raspberry zero.
  • 5050 ledstrip (didn’t had time to reprogram this for our mood-light)
  • Handheld gamehat: Bigred found some old games he played when he was young
  • Mikrotik router, because i wanted to make a dmz for my girlfriends laptop. (MS)
  • Playing around with my Vuze XR camera
  • Huskycam, which i’m planning to use on a racetrack
  • DVB-T DAB FM Stick, got some hints and tips from Bigred.
    (Note to myself … fix the antenna!)
  • My Arduino touch bagpipe player with i2c
  • The wifi deauther, which has a display which i wanted to use to make a programmable clock for my 6502. Using a rotary encoder and the display to control the speed in Hz.
  • I spend many hours playing with the Badge and Kicad

Wrote some 6502 assembly, arduino sketches, php, bash and micropython.

While playing around with the badge i got some things working easily.
Spinning logo and blinky leds.
Next goal to achieve was, to get the gyroscope to control the angle of spinning.
Most of the code worked, but the gyro values stayed zero!
(After many hours …. you have to start/enable the chip/measurements on the bno055 first! .. duh! )

I didn’t had my dev directory from my main battlestation synced in my nextcloud, so changing things for the 6502 was a b*tch.
Used vasm and acme to generate a bin file to use to fill the rom.
Didn’t like the eeprom programmer program, because i could not easily check the rom contents.
Have to look into that later on.

While learning to use Kicad, which i only had been using to draw schematics (besides fritzing) , i learned to create a pcb.
Which gave me the idea to make a print for the power-on-reset for the 6502. Which is going to be the first PCB by ordering, instead of the old skool messing around with DIY print making. (see next post)

….. Oh, why my display was not working?
I even connected my 8bit logic analyzer to the pins of the display.

Everything was correct.
But i didn’t use a variable resistor for the contrast. Just a simple resistor i could find. Luckily … bigreds stash.
All those hours debugging, all for one resistor!
(I have to mention, we had a suspicion halfway. But it was too hot and we where too lazy to go to Bigred’s campervan, to get a potentiometer. )

Goodies from Bigred